LIGO's quantum response to squeezed states
- Creators
- McCuller, L.
- Dwyer, S. E.
- Green, A. C.
- Yu, Haocun
- Kuns, K.
- Barsotti, L.
- Blair, C. D.
- Brown, D. D.
- Effler, A.
- Evans, M.
- Fernandez-Galiana, A.
- Fritschel, P.
- Frolov, V. V.
- Kijbunchoo, N.
- Mansell, G. L.
- Matichard, F.
- Mavalvala, N.
- McClelland, D. E.
- McRae, T.
- Mullavey, A.
- Sigg, D.
- Slagmolen, B. J. J.
- Tse, M.
- Vo, T.
- Ward, R. L.
- Whittle, C.
- Abbott, R.
- Adams, C.
- Adhikari, R. X.
- Ananyeva, A.
- Appert, S.
- Arai, K.
- Areeda, J. S.
- Asali, Y.
- Aston, S. M.
- Austin, C.
- Baer, A. M.
- Ball, M.
- Ballmer, S. W.
- Banagiri, S.
- Barker, D.
- Bartlett, J.
- Berger, B. K.
- Betzwieser, J.
- Bhattacharjee, D.
- Billingsley, G.
- Biscans, S.
- Blair, R. M.
- Bode, N.
- Booker, P.
- Bork, R.
- Bramley, A.
- Brooks, A. F.
- Buikema, A.
- Cahillane, C.
- Cannon, K. C.
- Chen, X.
- Ciobanu, A. A.
- Clara, F.
- Compton, C. M.
- Cooper, S. J.
- Corley, K. R.
- Countryman, S. T.
- Covas, P. B.
- Coyne, D. C.
- Datrier, L. E. H.
- Davis, D.
- Di Fronzo, C.
- Dooley, K. L.
- Driggers, J. C.
- Etzel, T.
- Evans, T. M.
- Feicht, J.
- Fulda, P.
- Fyffe, M.
- Giaime, J. A.
- Giardina, K. D.
- Godwin, P.
- Goetz, E.
- Gras, S.
- Gray, C.
- Gray, R.
- Gustafson, E. K.
- Gustafson, R.
- Hanks, J.
- Hanson, J.
- Hardwick, T.
- Hasskew, R. K.
- Heintze, M. C.
- Helmling-Cornell, A. F.
- Holland, N. A.
- Jones, J. D.
- Kandhasamy, S.
- Karki, S.
- Kasprzack, M.
- Kawabe, K.
- King, P. J.
- Kissel, J. S.
- Kumar, Rahul
- Landry, M.
- Lane, B. B.
- Lantz, B.
- Laxen, M.
- Lecoeuche, Y. K.
- Leviton, J.
- Liu, J.
- Lormand, M.
- Lundgren, A. P.
- Macas, R.
- MacInnis, M.
- Macleod, D. M.
- Márka, S.
- Márka, Z.
- Martynov, D. V.
- Mason, K.
- Massinger, T. J.
- McCarthy, R.
- McCormick, S.
- McIver, J.
- Mendell, G.
- Merfeld, K.
- Merilh, E. L.
- Meylahn, F.
- Mistry, T.
- Mittleman, R.
- Moreno, G.
- Mow-Lowry, C. M.
- Mozzon, S.
- Nelson, T. J. N.
- Nguyen, P.
- Nuttall, L. K.
- Oberling, J.
- Oram, Richard J.
- Osthelder, C.
- Ottaway, D. J.
- Overmier, H.
- Palamos, J. R.
- Parker, W.
- Payne, E.
- Pele, A.
- Penhorwood, R.
- Perez, C. J.
- Pirello, M.
- Radkins, H.
- Ramirez, K. E.
- Richardson, J. W.
- Riles, K.
- Robertson, N. A.
- Rollins, J. G.
- Romel, C. L.
- Romie, J. H.
- Ross, M. P.
- Ryan, K.
- Sadecki, T.
- Sanchez, E. J.
- Sanchez, L. E.
- Saravanan, T. R.
- Savage, R. L.
- Schaetzl, D.
- Schnabel, R.
- Schofield, R. M. S.
- Schwartz, E.
- Sellers, D.
- Shaffer, T.
- Smith, J. R.
- Soni, S.
- Sorazu, B.
- Spencer, A. P.
- Strain, K. A.
- Sun, L.
- Szczepańczyk, M. J.
- Thomas, M.
- Thomas, P.
- Thorne, K. A.
- Toland, K.
- Torrie, C. I.
- Traylor, G.
- Urban, A. L.
- Vajente, G.
- Valdes, G.
- Vander-Hyde, D. C.
- Veitch, P. J.
- Venkateswara, K.
- Venugopalan, G.
- Viets, A. D.
- Vorvick, C.
- Wade, M.
- Warner, J.
- Weaver, B.
- Weiss, R.
- Willke, B.
- Wipf, C. C.
- Xiao, L.
- Yamamoto, H.
- Yu, Hang
- Zhang, L.
- Zucker, M. E.
- Zweizig, J.
Abstract
Gravitational wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the Universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and—for the first time—give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors.
Additional Information
© 2021 American Physical Society. Received 26 May 2021; accepted 19 July 2021; published 13 September 2021. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement No. PHY-1764464. Advanced LIGO was built under Grant No. PHY-0823459. The authors gratefully acknowledge the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.Attached Files
Published - PhysRevD.104.062006.pdf
Accepted Version - 2105.12052.pdf
Files
Name | Size | Download all |
---|---|---|
md5:b87ddd03fb56b5162c5edfef47302827
|
1.3 MB | Preview Download |
md5:172cc84dce598834e5807d757cb48be1
|
1.0 MB | Preview Download |
Additional details
- Eprint ID
- 111345
- Resolver ID
- CaltechAUTHORS:20211011-150538228
- NSF
- PHY-1764464
- NSF
- PHY-0823459
- NSF Graduate Research Fellowship
- DGE-1122374
- Created
-
2021-10-11Created from EPrint's datestamp field
- Updated
-
2022-10-26Created from EPrint's last_modified field
- Caltech groups
- LIGO