Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 15, 2021 | Accepted Version + Published
Journal Article Open

LIGO's quantum response to squeezed states

McCuller, L. ORCID icon
Dwyer, S. E.
Green, A. C.
Yu, Haocun ORCID icon
Kuns, K. ORCID icon
Barsotti, L. ORCID icon
Blair, C. D. ORCID icon
Brown, D. D.
Effler, A. ORCID icon
Evans, M. ORCID icon
Fernandez-Galiana, A. ORCID icon
Fritschel, P. ORCID icon
Frolov, V. V.
Kijbunchoo, N. ORCID icon
Mansell, G. L.
Matichard, F. ORCID icon
Mavalvala, N. ORCID icon
McClelland, D. E.
McRae, T.
Mullavey, A. ORCID icon
Sigg, D. ORCID icon
Slagmolen, B. J. J. ORCID icon
Tse, M. ORCID icon
Vo, T.
Ward, R. L.
Whittle, C. ORCID icon
Abbott, R.
Adams, C.
Adhikari, R. X. ORCID icon
Ananyeva, A.
Appert, S.
Arai, K. ORCID icon
Areeda, J. S.
Asali, Y.
Aston, S. M.
Austin, C. ORCID icon
Baer, A. M.
Ball, M.
Ballmer, S. W.
Banagiri, S. ORCID icon
Barker, D.
Bartlett, J.
Berger, B. K. ORCID icon
Betzwieser, J. ORCID icon
Bhattacharjee, D. ORCID icon
Billingsley, G. ORCID icon
Biscans, S. ORCID icon
Blair, R. M.
Bode, N. ORCID icon
Booker, P.
Bork, R.
Bramley, A.
Brooks, A. F. ORCID icon
Buikema, A. ORCID icon
Cahillane, C. ORCID icon
Cannon, K. C.
Chen, X.
Ciobanu, A. A.
Clara, F.
Compton, C. M.
Cooper, S. J.
Corley, K. R.
Countryman, S. T.
Covas, P. B.
Coyne, D. C. ORCID icon
Datrier, L. E. H. ORCID icon
Davis, D. ORCID icon
Di Fronzo, C.
Dooley, K. L.
Driggers, J. C.
Etzel, T.
Evans, T. M.
Feicht, J. ORCID icon
Fulda, P. ORCID icon
Fyffe, M.
Giaime, J. A. ORCID icon
Giardina, K. D.
Godwin, P.
Goetz, E. ORCID icon
Gras, S.
Gray, C. ORCID icon
Gray, R. ORCID icon
Gustafson, E. K.
Gustafson, R.
Hanks, J.
Hanson, J.
Hardwick, T.
Hasskew, R. K.
Heintze, M. C.
Helmling-Cornell, A. F. ORCID icon
Holland, N. A.
Jones, J. D.
Kandhasamy, S. ORCID icon
Karki, S.
Kasprzack, M. ORCID icon
Kawabe, K. ORCID icon
King, P. J.
Kissel, J. S. ORCID icon
Kumar, Rahul
Landry, M.
Lane, B. B.
Lantz, B. ORCID icon
Laxen, M. ORCID icon
Lecoeuche, Y. K.
Leviton, J.
Liu, J.
Lormand, M.
Lundgren, A. P.
Macas, R. ORCID icon
MacInnis, M. ORCID icon
Macleod, D. M. ORCID icon
Márka, S. ORCID icon
Márka, Z. ORCID icon
Martynov, D. V.
Mason, K.
Massinger, T. J. ORCID icon
McCarthy, R.
McCormick, S.
McIver, J. ORCID icon
Mendell, G.
Merfeld, K.
Merilh, E. L.
Meylahn, F. ORCID icon
Mistry, T.
Mittleman, R.
Moreno, G.
Mow-Lowry, C. M.
Mozzon, S. ORCID icon
Nelson, T. J. N.
Nguyen, P. ORCID icon
Nuttall, L. K.
Oberling, J.
Oram, Richard J.
Osthelder, C.
Ottaway, D. J.
Overmier, H.
Palamos, J. R.
Parker, W. ORCID icon
Payne, E.
Pele, A. ORCID icon
Penhorwood, R.
Perez, C. J.
Pirello, M. ORCID icon
Radkins, H.
Ramirez, K. E.
Richardson, J. W. ORCID icon
Riles, K. ORCID icon
Robertson, N. A.
Rollins, J. G. ORCID icon
Romel, C. L.
Romie, J. H.
Ross, M. P.
Ryan, K.
Sadecki, T.
Sanchez, E. J.
Sanchez, L. E. ORCID icon
Saravanan, T. R.
Savage, R. L.
Schaetzl, D.
Schnabel, R. ORCID icon
Schofield, R. M. S.
Schwartz, E. ORCID icon
Sellers, D.
Shaffer, T.
Smith, J. R.
Soni, S. ORCID icon
Sorazu, B. ORCID icon
Spencer, A. P.
Strain, K. A.
Sun, L. ORCID icon
Szczepańczyk, M. J. ORCID icon
Thomas, M.
Thomas, P.
Thorne, K. A.
Toland, K.
Torrie, C. I.
Traylor, G.
Urban, A. L.
Vajente, G. ORCID icon
Valdes, G. ORCID icon
Vander-Hyde, D. C.
Veitch, P. J.
Venkateswara, K.
Venugopalan, G. ORCID icon
Viets, A. D.
Vorvick, C. ORCID icon
Wade, M. ORCID icon
Warner, J.
Weaver, B. ORCID icon
Weiss, R.
Willke, B. ORCID icon
Wipf, C. C.
Xiao, L. ORCID icon
Yamamoto, H. ORCID icon
Yu, Hang ORCID icon
Zhang, L. ORCID icon
Zucker, M. E. ORCID icon
Zweizig, J. ORCID icon

Abstract

Gravitational wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the Universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and—for the first time—give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors.

Additional Information

© 2021 American Physical Society. Received 26 May 2021; accepted 19 July 2021; published 13 September 2021. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement No. PHY-1764464. Advanced LIGO was built under Grant No. PHY-0823459. The authors gratefully acknowledge the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

Attached Files

Published - PhysRevD.104.062006.pdf

Accepted Version - 2105.12052.pdf

Files

PhysRevD.104.062006.pdf
Files (2.3 MB)
Name Size Download all
md5:b87ddd03fb56b5162c5edfef47302827
1.3 MB Preview Download
md5:172cc84dce598834e5807d757cb48be1
1.0 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023