Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2021 | public
Book Section - Chapter

Neural Stochastic Contraction Metrics for Learning-based Control and Estimation

Abstract

We present Neural Stochastic Contraction Metrics (NSCM), a new design framework for provably-stable learning-based control and estimation for a class of stochastic nonlinear systems. It uses a spectrally-normalized deep neural network to construct a contraction metric and its differential Lyapunov function, sampled via simplified convex optimization in the stochastic setting. Spectral normalization constrains the state-derivatives of the metric to be Lipschitz continuous, thereby ensuring exponential boundedness of the mean squared distance of system trajectories under stochastic disturbances. The trained NSCM model allows autonomous systems to approximate optimal stable control and estimation policies in real-time, and outperforms existing nonlinear control and estimation techniques including the state-dependent Riccati equation, iterative LQR, EKF, and the deterministic NCM, as shown in simulation results.

Additional Information

© 2021 AACC. This work was funded in part by the Raytheon Company and benefited from discussions with Nicholas Boffi and Quang-Cuong Pham.

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023