Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2021 | Accepted Version + Published + Supplemental Material
Journal Article Open

Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

Janssen, Michael ORCID icon
Falcke, Heino ORCID icon
Kadler, Matthias ORCID icon
Ros, Eduardo ORCID icon
Wielgus, Maciek ORCID icon
Akiyama, Kazunori ORCID icon
Baloković, Mislav ORCID icon
Blackburn, Lindy ORCID icon
Bouman, Katherine L. ORCID icon
Chael, Andrew ORCID icon
Chan, Chi-kwan ORCID icon
Chatterjee, Koushik ORCID icon
Davelaar, Jordy ORCID icon
Edwards, Philip G. ORCID icon
Fromm, Christian M. ORCID icon
Gómez, José L. ORCID icon
Goddi, Ciriaco ORCID icon
Issaoun, Sara ORCID icon
Johnson, Michael D. ORCID icon
Kim, Junhan ORCID icon
Koay, Jun Yi ORCID icon
Krichbaum, Thomas P. ORCID icon
Liu, Jun ORCID icon
Liuzzo, Elisabetta ORCID icon
Markoff, Sera ORCID icon
Markowitz, Alex
Marrone, Daniel P. ORCID icon
Mizuno, Yosuke ORCID icon
Müller, Cornelia ORCID icon
Ni, Chunchong ORCID icon
Pesce, Dominic W. ORCID icon
Ramakrishnan, Venkatessh ORCID icon
Roelofs, Freek ORCID icon
Rygl, Kazi L. J. ORCID icon
van Bemmel, Ilse ORCID icon
Alberdi, Antxon ORCID icon
Alef, Walter
Algaba, Juan Carlos ORCID icon
Anantua, Richard ORCID icon
Asada, Keiichi
Azulay, Rebecca ORCID icon
Baczko, Anne-Kathrin ORCID icon
Ball, David
Barrett, John ORCID icon
Benson, Bradford A. ORCID icon
Bintley, Dan
Blundell, Raymond ORCID icon
Boland, Wilfred
Bower, Geoffrey C. ORCID icon
Boyce, Hope ORCID icon
Bremer, Michael
Brinkerink, Christiaan D. ORCID icon
Brissenden, Roger ORCID icon
Britzen, Silke ORCID icon
Broderick, Avery E. ORCID icon
Broguiere, Dominique
Bronzwaer, Thomas ORCID icon
Byun, Do-Young ORCID icon
Carlstrom, John E. ORCID icon
Chatterjee, Shami ORCID icon
Chen, Ming-Tang ORCID icon
Chen, Yongjun ORCID icon
Chesler, Paul M. ORCID icon
Cho, Ilje ORCID icon
Christian, Pierre ORCID icon
Conway, John E. ORCID icon
Cordes, James M. ORCID icon
Crawford, Thomas M. ORCID icon
Crew, Geoffrey B. ORCID icon
Cruz-Osorio, Alejandro ORCID icon
Cui, Yuzhu ORCID icon
De Laurentis, Mariafelicia ORCID icon
Deane, Roger ORCID icon
Dempsey, Jessica ORCID icon
Desvignes, Gregory ORCID icon
Dexter, Jason ORCID icon
Doeleman, Sheperd S. ORCID icon
Eatough, Ralph P. ORCID icon
Farah, Joseph ORCID icon
Fish, Vincent L. ORCID icon
Fomalont, Ed ORCID icon
Ford, H. Alyson ORCID icon
Fraga-Encinas, Raquel ORCID icon
Friberg, Per ORCID icon
Fuentes, Antonio ORCID icon
Galison, Peter ORCID icon
Gammie, Charles F. ORCID icon
García, Roberto ORCID icon
Gelles, Zachary ORCID icon
Gentaz, Olivier
Georgiev, Boris ORCID icon
Gold, Roman ORCID icon
Gómez-Ruiz, Arturo I. ORCID icon
Gu, Minfeng ORCID icon
Gurwell, Mark ORCID icon
Hada, Kazuhiro ORCID icon
Haggard, Daryl ORCID icon
Hecht, Michael H.
Hesper, Ronald ORCID icon
Himwich, Elizabeth
Ho, Luis C. ORCID icon
Ho, Paul ORCID icon
Honma, Mareki ORCID icon
Huang, Chih-Wei L. ORCID icon
Huang, Lei ORCID icon
Hughes, David H.
Ikeda, Shiro ORCID icon
Inoue, Makoto ORCID icon
James, David J. ORCID icon
Jannuzi, Buell T. ORCID icon
Jeter, Britton ORCID icon
Jiang, Wu ORCID icon
Jiménez-Rosales, Alejandra ORCID icon
Jorstad, Svetlana ORCID icon
Jung, Taehyun ORCID icon
Karami, Mansour ORCID icon
Karuppusamy, Ramesh ORCID icon
Kawashima, Tomohisa ORCID icon
Keating, Garrett K. ORCID icon
Kettenis, Mark ORCID icon
Kim, Dong-Jin ORCID icon
Kim, Jae-Young ORCID icon
Kim, Jongsoo ORCID icon
Kino, Motoki ORCID icon
Kofuji, Yutaro
Koyama, Shoko ORCID icon
Kramer, Michael ORCID icon
Kramer, Carsten ORCID icon
Kuo, Cheng-Yu ORCID icon
Lauer, Tod R. ORCID icon
Lee, Sang-Sung ORCID icon
Levis, Aviad ORCID icon
Li, Yan-Rong ORCID icon
Li, Zhiyuan ORCID icon
Lindqvist, Michael ORCID icon
Lico, Rocco ORCID icon
Lindahl, Greg ORCID icon
Liu, Kuo ORCID icon
Lo, Wen-Ping ORCID icon
Lobanov, Andrei P. ORCID icon
Loinard, Laurent ORCID icon
Lonsdale, Colin ORCID icon
Lu, Ru-Sen ORCID icon
MacDonald, Nicholas R. ORCID icon
Mao, Jirong ORCID icon
Marchili, Nicola ORCID icon
Marscher, Alan P. ORCID icon
Martí-Vidal, Iván ORCID icon
Matsushita, Satoki ORCID icon
Matthews, Lynn D. ORCID icon
Medeiros, Lia ORCID icon
Menten, Karl M. ORCID icon
Mizuno, Izumi ORCID icon
Moran, James M. ORCID icon
Moriyama, Kotaro ORCID icon
Moscibrodzka, Monika ORCID icon
Musoke, Gibwa ORCID icon
Mejías, Alejandro Mus ORCID icon
Nagai, Hiroshi ORCID icon
Nagar, Neil M. ORCID icon
Nakamura, Masanori ORCID icon
Narayan, Ramesh ORCID icon
Narayanan, Gopal ORCID icon
Natarajan, Iniyan ORCID icon
Nathanail, Antonios
Neilsen, Joey ORCID icon
Neri, Roberto ORCID icon
Noutsos, Aristeidis ORCID icon
Nowak, Michael A. ORCID icon
Okino, Hiroki ORCID icon
Olivares, Héctor ORCID icon
Ortiz-León, Gisela N. ORCID icon
Oyama, Tomoaki ORCID icon
Özel, Feryal
Palumbo, Daniel C. M. ORCID icon
Park, Jongho ORCID icon
Patel, Nimesh
Pen, Ue-Li ORCID icon
Piétu, Vincent
Plambeck, Richard ORCID icon
PopStefanija, Aleksandar
Porth, Oliver ORCID icon
Pötzl, Felix M. ORCID icon
Prather, Ben ORCID icon
Preciado-López, Jorge A. ORCID icon
Psaltis, Dimitrios ORCID icon
Pu, Hung-Yi ORCID icon
Rao, Ramprasad ORCID icon
Rawlings, Mark G. ORCID icon
Raymond, Alexander W. ORCID icon
Rezzolla, Luciano ORCID icon
Ricarte, Angelo ORCID icon
Ripperda, Bart ORCID icon
Rogers, Alan ORCID icon
Rose, Mel ORCID icon
Roshanineshat, Arash
Rottmann, Helge ORCID icon
Roy, Alan L. ORCID icon
Ruszczyk, Chet ORCID icon
Sánchez, Salvador ORCID icon
Sánchez-Arguelles, David ORCID icon
Sasada, Mahito ORCID icon
Savolainen, Tuomas ORCID icon
Schloerb, F. Peter
Schuster, Karl-Friedrich ORCID icon
Shao, Lijing ORCID icon
Shen, Zhiqiang ORCID icon
Small, Des ORCID icon
Sohn, Bong Won ORCID icon
SooHoo, Jason ORCID icon
Sun, He ORCID icon
Tazaki, Fumie ORCID icon
Tetarenko, Alexandra J. ORCID icon
Tiede, Paul ORCID icon
Tilanus, Remo P. J. ORCID icon
Titus, Michael ORCID icon
Torne, Pablo ORCID icon
Trent, Tyler
Traianou, Efthalia ORCID icon
Trippe, Sascha ORCID icon
van Bemmel, Ilse ORCID icon
van Langevelde, Huib Jan ORCID icon
van Rossum, Daniel R. ORCID icon
Wagner, Jan ORCID icon
Ward-Thompson, Derek ORCID icon
Wardle, John ORCID icon
Weintroub, Jonathan ORCID icon
Wex, Norbert ORCID icon
Wharton, Robert ORCID icon
Wong, George N. ORCID icon
Wu, Qingwen ORCID icon
Yoon, Doosoo ORCID icon
Young, André ORCID icon
Young, Ken ORCID icon
Younsi, Ziri ORCID icon
Yuan, Feng ORCID icon
Yuan, Ye-Fei ORCID icon
Zensus, J. Anton ORCID icon
Zhao, Guang-Yao ORCID icon
Zhao, Shan-Shan ORCID icon
Event Horizon Telescope Collaboration

Abstract

Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (r_g ≡ GM/c²) scales in nearby sources. Centaurus A is the closest radio-loud source to Earth. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 r_g scales remarkably well. Furthermore, we identify the location of Centaurus A's SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source's event horizon shadow should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses.

Additional Information

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Received 22 January 2021; Accepted 02 June 2021; Published 19 July 2021. A.C. is an Einstein Fellow of the NASA Hubble Fellowship Program. J.P is an EACOA fellow. Z.Y. is a UKRI Stephen Hawking Fellow. We thank the following organizations and programmes: the Academy of Finland (projects 274477, 284495, 312496, 315721); the Agencia Nacional de Investigación y Desarrollo (ANID), Chile via NCN19_058 (TITANs) and Fondecyt 3190878; the Alexander von Humboldt Stiftung; an Alfred P. Sloan Research Fellowship; Allegro, the European ALMA Regional Centre node in the Netherlands, the NL astronomy research network NOVA and the astronomy institutes of the University of Amsterdam, Leiden University and Radboud University; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico, projects U0004-246083, U0004-259839, F0003-272050, M0037-279006, F0003-281692, 104497, 275201, 263356, 57265507); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM, projects IN112417 and IN112820); the EACOA Fellowship of the East Asia Core Observatories Association; the European Research Council Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177 and GenT Program (project CIDEGENT/2018/021); MICINN Research Project PID2019-108995GB-C22; the Gordon and Betty Moore Foundation (grants GBMF- 3561, GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; Joint Princeton/Flatiron and Joint Columbia/Flatiron Postdoctoral Fellowships, research at the Flatiron Institute is supported by the Simons Foundation; the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJSSW- SYS008, ZDBS-LY-SLH011). We further thank the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, JP19H01943, 25120007); the Malaysian Fundamental Research Grant Scheme (FRGS) FRGS/1/2019/STG02/UM/02/6; the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105- 2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119- M-001-027, 107-2119-M-001-017, 107-2119-M-001-020, 107-2119-M-110-005, 108-2112-M-001-048, and 109-2124-M-001-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC20K1567, NASA Astrophysics Theory Program grant 80NSSC20K0527, NASA grant NNX17AL82G, and Hubble Fellowship grant HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555, and NASA NuSTAR award 80NSSC20K0645); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085, AST-1207704, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097, AST-1310896, AST-1337663, AST-1440254, AST-1555365, AST-1615796, AST-1715061, AST-1716327, AST-1716536, OISE-1743747, AST-1816420, AST-1903847, AST-1935980, AST-2034306); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11933007, 11991052, 11991053); a fellowship of China Postdoctoral Science Foundation (2020M671266); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants 2014H1A2A1018695, NRF-2015H1A2A1033752, 2015- R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561, Basic Research Support Grant 2019R1F1A1059721); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Innovation (DSI) of South Africa; the South African Research Chairs Initiative of the Department of Science and Innovation and National Research Foundation; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Spanish Ministerio de Economía y Competitividad (grants PGC2018-098915-B-C21, AYA2016-80889-P, PID2019-108995GB-C21); the State Agency for Research of the Spanish MCIU through the 'Center of Excellence Severo Ochoa' award for the Instituto de Astrofísica de Andalucía (SEV-2017- 0709); the Toray Science Foundation; the Consejería de Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucía (grant P18-FR-1769), the Consejo Superior de Investigaciones Científicas (grant 2019AEP112); the US Department of Energy (US DOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US DOE (Contract 89233218CNA000001); the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 RadioNet; ALMA North America Development Fund; the Academia Sinica; Chandra TM6- 17006X and DD7-18089X; the GenT Program (Generalitat Valenciana) Project CIDEGENT/2018/021. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant ACI-1548562, and CyVerse, supported by NSF grants DBI-0735191, DBI-1265383, and DBI-1743442. XSEDE Stampede2 resource at TACC was allocated through TG-AST170024 and TG-AST080026N. XSEDE JetStream resource at PTI and TACC was allocated through AST170028. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, on the LOEWE cluster in CSC in Frankfurt, and on the HazelHen cluster at the HLRS in Stuttgart. This research was enabled in part by support provided by Compute Ontario (http://computeontario.ca), Calcul Quebec (http://www.calculquebec.ca) and Compute Canada (http://www.computecanada.ca). We thank the staff at the participating observatories, correlation centres, and institutions for their enthusiastic support. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.01198.V. ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), NSF, and National Institutes of Natural Sciences of Japan, together with National Research Council (Canada), Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc. (AUI)/NRAO, and the National Astronomical Observatory of Japan (NAOJ). The NRAO is a facility of the NSF operated under cooperative agreement by AUI. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie (Germany), ESO, and the Onsala Space Observatory (Sweden). The SMA is a joint project between the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia Sinica. The JCMT is operated by the East Asian Observatory on behalf of the NAOJ, ASIAA, and KASI, as well as the Ministry of Finance of China, Chinese Academy of Sciences, and the National Key R&D Program (No. 2017YFA0402700) of China. Additional funding support for the JCMT is provided by the Science and Technologies Facility Council (UK) and participating universities in the UK and Canada. The LMT is a project operated by the Instituto Nacional de Astrófisica, Óptica, y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA), with financial support from the Consejo Nacional de Ciencia y Tecnología and the National Science Foundation. The IRAM 30-m telescope on Pico Veleta, Spain is operated by IRAM and supported by CNRS (Centre National de la Recherche Scientifique, France), MPG (Max-Planck- Gesellschaft, Germany) and IGN (Instituto Geográfico Nacional, Spain). The SMT is operated by the Arizona Radio Observatory, a part of the Steward Observatory of the University of Arizona, with financial support of operations from the State of Arizona and financial support for instrumentation development from the NSF. The SPT is supported by the National Science Foundation through grant PLR- 1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. The SPT hydrogen maser was provided on loan from the GLT, courtesy of ASIAA. The EHTC has received generous donations of FPGA chips from Xilinx Inc., under the Xilinx University Program. The EHTC has benefited from technology shared under open-source license by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). The EHT project is grateful to T4Science and Microsemi for their assistance with Hydrogen Masers. This research has made use of NASA's Astrophysics Data System. We gratefully acknowledge the support provided by the extended staff of the ALMA, both from the inception of the ALMA Phasing Project through the observational campaigns of 2017 and 2018. We would like to thank A. Deller and W. Brisken for EHT-specific support with the use of DiFX. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people. The grants listed above collectively fund the Event Horizon Telescope project. Data availability: The ALMA raw visibility data can be retrieved from the ALMA data portal under the project code 2016.1.01198.V. The calibrated Stokes I VLBI visibility data of Centaurus A can be obtained from a DOI listed under https://eventhorizontelescope.org/for-astronomers/data with the code 2021-D03-01. Image FITS files and scripts to reproduce the plots are available from the corresponding author upon reasonable request. Code availability: Antenna gains that enter the SEFDs were computed with https://bitbucket.org/M_Janssen/eht-flux-calibration. The SEFDs were applied with the https://github.com/sao-eht/eat code, which also contains the EHT-HOPS pipeline. rPICARD is hosted on https://bitbucket.org/M_Janssen/picard. Configuration and run files, which make use of self-contained Docker images are at https://bitbucket.org/M_Janssen/casaeht. This work is based on the 'ER6' data production scripts, for which the 30e6ca14fb50275013c668285a3b476f9bc85436_91da63236db34f3a31b5309b18ac159128f28a35 image was used. The eht-imaging software is hosted on https://github.com/achael/eht-imaging. SYMBA is at https://bitbucket.org/M_Janssen/symba. The docker image used here is tagged as dec65699ccc0acdc6e6ba8f218d6724537fc613a and can be found on https://hub.docker.com/r/mjanssen2308/symba. Author Contributions: K.A., L.B., C.-k.C., S.I., M.J., J.K., J.Y.K., T.P.K., J.L., E.L., D.P.M., V.R., K.L.J.R., I.V.B. and M.W. have worked on the calibration of the EHT data. K.A., K.L.B., A.C., J.L.G., S.I., M.J., M.D.J., C.N., D.W.P., F.R. and M.W. have worked on the image reconstruction. M.B., K.C., J.D., P.G.E., H.F., C.M.F., C.G., M.J., M.K., Y.M., A.M., S.M., E.R. and M.W. have worked on the interpretation of the results. M.J., M.K., C.M. and E.R. have coordinated the research. The Event Horizon Telescope collaboration as a whole has enabled this research by building the EHT instrument and producing the tools and knowledge for the reduction, analysis and interpretation of the data. The authors declare no competing interests. Peer review information:  Nature Astronomy thanks Denise Gabuzda, Talvikki Hovatta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Attached Files

Published - s41550-021-01417-w.pdf

Accepted Version - 2111.03356.pdf

Supplemental Material - 41550_2021_1417_MOESM1_ESM.pdf

Files

s41550-021-01417-w.pdf
Files (6.0 MB)
Name Size Download all
md5:0c90616ccb09fcf1c8d8c629a4287a47
1.9 MB Preview Download
md5:0f78b1e12fc8e91484b844b0bdd30ffc
1.6 MB Preview Download
md5:2da040636365fef43f363d97928df5c1
2.6 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023