Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2021 | Submitted + Published
Journal Article Open

Antineutrino energy spectrum unfolding based on the Daya Bay measurement and its applications

An, F. P.
Balantekin, A. B.
Bishai, M.
Blyth, S.
Cao, G. F.
Cao, J.
Chang, J. F.
Chang, Y.
Chen, H. S.
Chen, S. M.
Chen, Y.
Chen, Y. X.
Cheng, J.
Cheng, Z. K.
Cherwinka, J. J.
Chu, M. C.
Cummings, J. P.
Dalager, O.
Deng, F. S.
Ding, Y. Y.
Diwan, M. V.
Dohnal, T.
Dolzhikov, D.
Dove, J.
Dvořák, M.
Dwyer, D. A.
Gallo, J. P.
Gonchar, M.
Gong, G. H.
Gong, H.
Grassi, M.
Gu, W. Q.
Guo, J. Y.
Guo, L.
Guo, X. H.
Guo, Y. H.
Guo, Z.
Hackenburg, R. W.
Hans, S.
He, M.
Heeger, K. M.
Heng, Y. K.
Hor, Y. K.
Hsiung, Y. B.
Hu, B. Z.
Hu, J. R.
Hu, T.
Hu, Z. J.
Huang, H. X.
Huang, J. H.
Huang, X. T.
Huang, Y. B.
Huber, P.
Jaffe, D. E.
Jen, K. L.
Ji, X. L.
Ji, X. P.
Johnson, R. A.
Jones, D.
Kang, L.
Kettell, S. H.
Kohn, S.
Kramer, M.
Langford, T. J.
Lee, J.
Lee, J. H. C.
Lei, R. T.
Leitner, R.
Leung, J. K. C.
Li, F.
Li, H. L.
Li, J. J.
Li, Q. J.
Li, R. H.
Li, S.
Li, S. C.
Li, W. D.
Li, X. N.
Li, X. Q.
Li, Y. F.
Li, Z. B.
Liang, H.
Lin, C. J.
Lin, G. L.
Lin, S.
Ling, J. J.
Link, J. M.
Littenberg, L.
Littlejohn, B. R.
Liu, J. C.
Liu, J. L.
Liu, J. X.
Lu, C.
Lu, H. Q.
Luk, K. B.
Ma, B. Z.
Ma, X. B.
Ma, X. Y.
Ma, Y. Q.
Mandujano, R. C.
Marshall, C.
McDonald, K. T.
McKeown, R. D.
Meng, Y.
Napolitano, J.
Naumov, D.
Naumova, E.
Nguyen, T. M. T.
Ochoa-Ricoux, J. P.
Olshevskiy, A.
Pan, H.-R.
Park, J.
Patton, S.
Peng, J. C.
Pun, C. S. J.
Qi, F. Z.
Qi, M.
Qian, X.
Raper, N.
Ren, J.
Reveco, C. Morales
Rosero, R.
Roskovec, B.
Ruan, X. C.
Steiner, H.
Sun, J. L.
Tmej, T.
Treskov, K.
Tse, W.-H.
Tull, C. E.
Viren, B.
Vorobel, V.
Wang, C. H.
Wang, J.
Wang, M.
Wang, N. Y.
Wang, R. G.
Wang, W.
Wang, W.
Wang, X.
Wang, Y.
Wang, Y. F.
Wang, Z.
Wang, Z.
Wang, Z. M.
Wei, H. Y.
Wei, L. H.
Wen, L. J.
Whisnant, K.
White, C. G.
Wong, H. L. H.
Worcester, E.
Wu, D. R.
Wu, F. L.
Wu, Q.
Wu, W. J.
Xia, D. M.
Xie, Z. Q.
Xing, Z. Z.
Xu, H. K.
Xu, J. L.
Xu, T.
Xue, T.
Yang, C. G.
Yang, L.
Yang, Y. Z.
Yao, H. F.
Ye, M.
Yeh, M.
Young, B. L.
Yu, H. Z.
Yu, Z. Y.
Yue, B. B.
Zavadskyi, V.
Zeng, S.
Zeng, Y.
Zhan, L.
Zhang, C.
Zhang, F. Y.
Zhang, H. H.
Zhang, J. W.
Zhang, Q. M.
Zhang, S. Q.
Zhang, X. T.
Zhang, Y. M.
Zhang, Y. X.
Zhang, Y. Y.
Zhang, Z. J.
Zhang, Z. P.
Zhang, Z. Y.
Zhao, J.
Zhao, R. Z.
Zhou, L.
Zhuang, H. L.
Zou, J. H.

Abstract

The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.

Additional Information

© 2021. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd. Received 9 February 2021; Accepted 28 April 2021; Published online 1 June 2021. We acknowledge Yellow River Engineering Consult- ing Co., Ltd., and China Railway 15th Bureau Group Co., Ltd., for building the underground laboratory. We are grateful for the ongoing cooperation from the China Guangdong Nuclear Power Group and China Light & Power Company. Supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the Ministry of Education in TW, the U.S. National Science Foundation, the Ministry of Education, Youth, and Sports of the Czech Republic, the Charles University Research Centre UNCE, the Joint Institute of Nuclear Research in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile.

Attached Files

Published - An_2021_Chinese_Phys._C_45_073001.pdf

Submitted - 2102.04614.pdf

Files

2102.04614.pdf
Files (3.2 MB)
Name Size Download all
md5:cbcdeabdc426f96b7cfacb2cfc94d633
1.2 MB Preview Download
md5:f20be989def6c34635e493d4f9b7052b
1.9 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023