Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2021 | public
Journal Article

The role of micro-inertia on the shock structure in porous metals

Abstract

The behavior of porous materials under shock loading is a multi-scale problem bridging orders of magnitude across the macroscale geometry and the microscale pores. Under static loading, this problem is well understood, relating mechanisms of pore closure and crushing to the equivalent macroscale models. The dynamic response of porous solids under shock loading is related to the effects of viscoplasticity and micro-acceleration fields around the void boundaries. The significance of the micro-inertia effects in modeling the dynamic behavior of porous materials remains an open question. In this work, an experimental investigation on closed-cell porous aluminum with small porosity provides the evidence for the first time of micro-inertia's fundamental role in describing the shock structure in these materials. Materials with different levels of porosity were manufactured using a modified process of additive manufacturing to achieve a mean pore size below 50μm. Plate impact experiments on porous aluminum samples were conducted at pressures in the range of 2 to 11 GPa. The structure of the steady shock was characterized as a function of porosity and shown to validate behavior revealed by an analytical approach (Czarnota et al. [J. Mech. Phys. Solids 107 (2017)]), highlighting the fundamental role of micro-inertia effects in such cases.

Additional Information

© 2021 Elsevier. Received 11 December 2020, Revised 11 May 2021, Accepted 23 May 2021, Available online 29 May 2021. C. Czarnota and A. Molinari gratefully acknowledge the financial support of the French National Research Agency ANR (LabEx DAMAS, 535 Grant No. ANR-11-LABX-0008-01). G. Ravichandran acknowledges the support of the U.S. Department of Energy, DOE/NNSA (Award Nos. DE-NA0002007, DE-NA0003957). The authors would like to acknowledge the work of Jacob Nuechteriein and Adam J. Polizzi from Elementum 3D for the design and manufacturing of the AM materials used in this work. The authors would like to thank Dr. Branden Kappes and Professor Aaron Stebner from the Colorado School of Mines for conducting micro-tomography on the porous samples. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023