Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2021 | public
Journal Article

Information rate analysis of ASK-based molecular communication systems with feedback

Abstract

In this paper we develop lower and upper bounds on the capacity of an amplitude shift keying (ASK)-based molecular communication (MC) system with feedback. Analyzing the effect of feedback on the performance of MC is motivated by the growing use of feedback in controlling drug delivery. Based on causal knowledge of the number of transmitted and received molecules, the input probability of symbols is adapted so as to maximize directed information in the molecular communication channel. We considered one dimensional channel with drift velocity caused by blood flow. In our system, molecules propagate in a fluid with a drift velocity; the receiver absorbs the molecule unless it is saturated (saturation models a limit on ligand binding). The input is limited by a toxicity constraint of injected molecules. We also study the effects of feedback on the achievable information rates in terms of the time delay in receiving the feedback. We show that, especially for higher values of toxicity constraint and sequence length, feedback, in terms of causal knowledge of the number of delivered molecules, improves performance of ASK-based molecular communication.

Additional Information

© 2020 Elsevier. Received 25 March 2020, Revised 19 December 2020, Accepted 28 December 2020, Available online 30 December 2020. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023