Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 28, 2021 | Supplemental Material
Journal Article Open

Fluoride in the SEI Stabilizes the Li Metal Interface in Li–S Batteries with Solvate Electrolytes

Abstract

Lithium–sulfur (Li–S) batteries offer high theoretical gravimetric capacities at low cost relative to commercial lithium-ion batteries. However, the solubility of intermediate polysulfides in conventional electrolytes leads to irreversible capacity fade via the polysulfide shuttle effect. Highly concentrated solvate electrolytes reduce polysulfide solubility and improve the reductive stability of the electrolyte against Li metal anodes, but reactivity at the Li/solvate electrolyte interface has not been studied in detail. Here, reactivity between the Li metal anode and a solvate electrolyte (4.2 M LiTFSI in acetonitrile) is investigated as a function of temperature. Though reactivity at the Li/electrolyte interface is minimal at room temperature, we show that reactions between Li and the solvate electrolyte significantly impact the solid electrolyte interphase (SEI) impedance, cyclability, and capacity retention in Li–S cells at elevated temperatures. Addition of a fluoroether cosolvent to the solvate electrolyte results in more fluoride in the SEI which minimizes electrolyte decomposition, reduces SEI impedance, and improves cyclability. A 6 nm AlF₃ surface coating is employed at the Li anode to further improve interfacial stability at elevated temperatures. The coating enables moderate cyclability in Li–S cells at elevated temperatures but does not protect against capacity fade over time.

Additional Information

© 2021 American Chemical Society. Received: February 7, 2021; Accepted: April 4, 2021; Published: April 15, 2021. This research was carried out at the Jet Propulsion Laboratory and the California Institute of Technology under a contract with the National Aeronautics and Space Administration and funded through the President's and Director's Fund Program. XPS data were collected at the Molecular Materials Research Center in the Beckman Institute of the California Institute of Technology. The authors thank N. Gu for assistance with collecting temperature-controlled UV–vis spectra. The authors declare no competing financial interest.

Attached Files

Supplemental Material - am1c02629_si_001.pdf

Files

am1c02629_si_001.pdf
Files (2.4 MB)
Name Size Download all
md5:08f6428572d337f1425ef2218d5b7035
2.4 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023