Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 9, 2021 | Submitted
Report Open

Nearly tight Trotterization of interacting electrons

Abstract

We consider simulating quantum systems on digital quantum computers. We show that the performance of quantum simulation can be improved by simultaneously exploiting the commutativity of Hamiltonian, the sparsity of interactions, and the prior knowledge of initial state. We achieve this using Trotterization for a class of interacting electrons that encompasses various physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard model. We estimate the simulation error by taking the transition amplitude of nested commutators of Hamiltonian terms within the η-electron manifold. We develop multiple techniques for bounding the transition amplitude and expectation of general fermionic operators, which may be of independent interest. We show that it suffices to use O(n^(5/3)/η^(2/3)+n^(4/3)η^(2/3)) gates to simulate electronic structure in the plane-wave basis with n spin orbitals and η electrons up to a negligible factor, improving the best previous result in second quantization while outperforming the first-quantized simulation when n=O(η²). We also obtain an improvement for simulating the Fermi-Hubbard model. We construct concrete examples for which our bounds are almost saturated, giving a nearly tight Trotterization of interacting electrons.

Additional Information

We thank Fernando Brand˜ao for inspiring discussions during the initial stages of this work. YS thanks Nathan Wiebe, Guang Hao Low, Ryan Babbush, Minh Cong Tran, Kunal Sharma, John Preskill, and Andrew Childs for helpful discussions. He is supported by the National Science Foundation RAISE-TAQS 1839204 and Amazon Web Services, AWS Quantum Program. HH is supported by the J. Yang & Family Foundation. The Institute for Quantum Information and Matter is an NSF Physics Frontiers Center PHY-1733907.

Attached Files

Submitted - 2012.09194.pdf

Files

2012.09194.pdf
Files (625.6 kB)
Name Size Download all
md5:1531b9a324cafb5eef80b99960fbb810
625.6 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023