Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2021 | Accepted Version + Published
Journal Article Open

Euclid preparation. XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

Ilbert, O. ORCID icon
de la Torre, S.
Martinet, N.
Wright, A. H.
Paltani, S.
Laigle, C.
Davidzon, I.
Jullo, E.
Hildebrandt, H.
Masters, D. C. ORCID icon
Amara, A.
Conselice, C. J.
Andreon, S.
Auricchio, N.
Azzollini, R.
Baccigalupi, C.
Balaguera-Antolínez, A.
Baldi, M.
Balestra, A.
Bardelli, S.
Bender, R.
Biviano, A.
Bodendorf, C.
Bonino, D.
Borgani, S.
Boucaud, A.
Bozzo, E.
Branchini, E.
Brescia, M.
Burigana, C.
Cabanac, R.
Camera, S.
Capobianco, V.
Cappi, A.
Carbone, C.
Carretero, J.
Carvalho, C. S.
Casas, S.
Castander, F. J.
Castellano, M.
Castignani, G.
Cavuoti, S.
Cimatti, A.
Cledassou, R.
Colodro-Conde, C.
Congedo, G.
Conversi, L.
Copin, Y.
Corcione, L.
Costille, A.
Coupon, J.
Courtois, H. M.
Cropper, M.
Cuby, J.
Da Silva, A.
Degaudenzi, H.
Di Ferdinando, D.
Dubath, F.
Duncan, C.
Dupac, X.
Dusini, S.
Ealet, A.
Fabricius, M.
Farrens, S.
Ferreira, P. G.
Finelli, F.
Fosalba, P.
Fotopoulou, S.
Franceschi, E.
Franzetti, P.
Galeotta, S.
Garilli, B.
Gillard, W.
Gillis, B.
Giocoli, C.
Gozaliasl, G.
Graciá-Carpio, J.
Grupp, F.
Guzzo, L.
Haugan, S. V. H.
Holmes, W.
Hormuth, F.
Jahnke, K.
Keihanen, E.
Kermiche, S.
Kiessling, A.
Kirkpatrick, C. C.
Kunz, M.
Kurki-Suonio, H.
Ligori, S.
Lilje, P. B.
Lloro, I.
Maino, D.
Maiorano, E.
Marggraf, O.
Markovic, K.
Marulli, F.
Massey, R.
Maturi, M.
Mauri, N.
Maurogordato, S.
McCracken, H. J.
Medinaceli, E.
Mei, S.
Benton Metcalf, R.
Moresco, M.
Morin, B.
Moscardini, L.
Munari, E.
Nakajima, R.
Neissner, C.
Niemi, S.
Nightingale, J.
Padilla, C.
Pasian, F.
Patrizii, L.
Pedersen, K.
Pello, R.
Pettorino, V.
Pires, S.
Polenta, G.
Poncet, M.
Popa, L.
Potter, D.
Pozzetti, L.
Raison, F.
Renzi, A.
Rhodes, J. ORCID icon
Riccio, G.
Romelli, E.
Roncarelli, M.
Rossetti, E.
Saglia, R.
Sánchez, A. G.
Sapone, D.
Schneider, P.
Schrabback, T.
Scottez, V.
Secroun, A.
Seidel, G.
Serrano, S.
Sirignano, C.
Sirri, G.
Stanco, L.
Sureau, F.
Tallada Crespá, P.
Tenti, M.
Teplitz, H. I. ORCID icon
Tereno, I.
Toledo-Moreo, R.
Torradeflot, F.
Tramacere, A.
Valentijn, E. A.
Valenziano, L.
Valiviita, J.
Vassallo, T.
Wang, Y.
Welikala, N.
Weller, J.
Whittaker, L.
Zacchei, A.
Zamorani, G.
Zoubian, J.
Zucca, E.
Euclid Collaboration

Abstract

The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).

Additional Information

© 2021 Euclid Collaboration. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 24 December 2020; Accepted 2 January 2021; Published online 18 March 2021. We thank the OU-PHZ of Euclid for all the useful discussions along these years. OI acknowledges the funding of the French Agence Nationale de la Recherche for the project 'SAGACE'. NM acknowledges support from a CNES fellowship. H. Hildebrandt is supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft (Hi 1495/5-1) as well as an ERC Consolidator Grant (No. 770935). A.H. Wright is supported by the ERC Consolidator Grant (No. 770935). This work relied on the HPC resources of CINES (Jade) under the allocation 2013047012 and c2014047012 made by GENCI and on the Horizon Cluster hosted by Institut d'Astrophysique de Paris. ID acknowledges that he received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 896225. We warmly thank S. Rouberol for running the cluster on which the simulation was post-processed. This research is also partly supported by the Centre National d'Etudes Spatiales (CNES). We would also like to recognise the contributions from all of the members of the COSMOS team who helped in obtaining and reducing the large amount of multi-wavelength and spectroscopic data. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 177.A-3016, 177.A-3017, 177.A-3018, 179.A-2004, and on data products produced by the KiDS consortium. The KiDS production team acknowledges support from: Deutsche Forschungsgemeinschaft, ERC, NOVA and NWO-M grants; Target; the University of Padova, and the University Federico II (Naples). SA thank the support PRIN MIUR2015 "Cosmology and Fundamental Physics: Illuminating the Dark Universe with Euclid". The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the Centre National d'Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciencia e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid website (http://www.euclid-ec.org).

Attached Files

Published - aa40237-20.pdf

Accepted Version - 2101.02228.pdf

Files

2101.02228.pdf
Files (2.7 MB)
Name Size Download all
md5:c2dcd0f00e53cf321249a6055fa90fc7
1.3 MB Preview Download
md5:52f84248b774ddc4d138d9ed122eeedf
1.3 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023