Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2021 | Supplemental Material
Journal Article Open

Availability of subsurface water-ice resources in the northern mid-latitudes of Mars

Abstract

Multiple nations and private entities are pushing to make landing humans on Mars a reality. The majority of proposed mission architectures envision 'living off the land' by leveraging Martian water-ice deposits for fuel production and other purposes. Fortunately for mission designers, water ice exists on Mars in plentiful volumes. The challenge is isolating accessible ice deposits within regions that optimize other preferred landing-site conditions. Here we present the first results of the Mars Subsurface Water Ice Mapping (SWIM) project, which has the aim of searching for buried ice resources across the mid-latitudes. Through the integration of orbital datasets in concert with new data-processing techniques, the SWIM project assesses the likelihood of ice by quantifying the consistency of multiple, independent data sources with the presence of ice. Concentrating our efforts across the majority of the northern hemisphere, our composite ice-consistency maps indicate that the broad plains of Arcadia and the extensive glacial networks across Deuteronilus Mensae match the greatest number of remote-sensing criteria for accessible ice-rich, subsurface material situated equatorwards of the contemporary ice-stability zone.

Additional Information

© 2021 Nature Publishing Group. Received 05 December 2019; Accepted 30 October 2020; Published 08 February 2021. The Subsurface Water Ice Mapping (SWIM) in the northern hemisphere of Mars project outlined in this paper was supported by grants provided by NASA through the Jet Propulsion Laboratory (JPL subcontract number 1611855; JPL RSA: 1589197 and 1595721). Elements of the ice-detection techniques were pioneered through support provided to team members by the NASA Mars Reconnaissance Orbiter Project. The PSI also acknowledges SeisWare International Inc. for an academic license of their software that was used for the SHARAD subsurface mapping. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. Data availability: The ice-consistency and thickness maps (as both GIS-compatible GeoTIFFs and browse images) along with the constituent data for each ice-detection technique are available on the SWIM project website at https://swim.psi.edu. All of the instrument datasets used to derive our ice-detection techniques are available on the NASA Planetary Data System at https://pds.nasa.gov/. The Dickson et al.24 Context Camera mosaic used to tabulate the geomorphology ice-consistency values can be found on the Caltech Murray Lab website at http://murray-lab.caltech.edu/CTX/index.html. Updates of new SWIM products can be found at https://twitter.com/RedPlanetSWIM. Author Contributions: G.A.M. and N.E.P. led the project and wrote the majority of the manuscript. N.E.P., H.G.S., R.H.H., Z.M.B. and M.R.P. conducted the thermal analysis. A.M.B., E.I.P., Z.M.B., M.M. and M.R.P. undertook the radar subsurface dielectric mapping and analysis. D.M.H.B. led the geomorphic mapping. G.A.M. and B.A.C. derived the radar surface analysis products. M.R.P. set up the computational and website infrastructure and archiving. M.R.P., Z.M.B. and G.A.M. were responsible for producing the integrated Ci products. A.P., C.M.D., I.B.S. and B.A.C. contributed to the broad analysis and assisted the other team members in the preparation of the manuscript. The authors declare no competing interests. Peer review information: Nature Astronomy thanks Hideaki Miyamoto, Reid Parsons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Attached Files

Supplemental Material - 41550_2020_1290_MOESM1_ESM.pdf

Files

41550_2020_1290_MOESM1_ESM.pdf
Files (2.1 MB)
Name Size Download all
md5:85b3aeba397d84be5ea4496888951575
2.1 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023