Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 28, 2021 | Supplemental Material + Published
Journal Article Open

Multisatellite Imaging of a Gas Well Blowout Enables Quantification of Total Methane Emissions

Abstract

Incidents involving loss of control of oil/gas wells can result in large but variable emissions whose impact on the global methane budget is currently unknown. On November 1, 2019, a gas well blowout was reported in the Eagle Ford Shale. By combining satellite observations at different spatial and temporal scales, we quantified emissions 10 times during the 20‐day event. Our multisatellite synthesis captures both the short‐term dynamics and total integrated emissions of the blowout. Such detailed event characterization was previously not possible from space and difficult to do with surface measurements. We present 30‐m methane and carbon dioxide plumes from the PRISMA satellite, which let us estimate flare combustion efficiency (87%). Integrating emissions across all satellites, we estimate 4,800 ± 980 metric tons lost methane. Blowouts occur across the globe and multisatellite observations can help to determine their pervasiveness, enable corrective action, and quantify their contribution to global methane budgets.

Additional Information

© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Issue Online: 18 January 2021; Version of Record online: 18 January 2021; Accepted manuscript online: 06 December 2020; Manuscript accepted: 19 November 2020; Manuscript revised: 04 November 2020; Manuscript received: 21 September 2020. The authors thank Mike Smith at the Devon Energy Corporation for providing operator information and insights regarding this blowout event. Portions of this work were undertaken at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Some of the work was supported by NASA's Carbon Monitoring System program. This research contains Copernicus Sentinel data 2019. S. Pandey is supported through the GALES (Gas LEaks from Space) project (Grant 15597) by the Dutch Technology Foundation, which is part of the Netherlands Organisation for Scientific Research (NWO). WRF simulations were carried out on the Dutch National supercomputer Cartesius maintained by SurfSara (www.surfsara.nl). The authors thank colleagues at Planet Labs for tasking SkySat in response to this event. Data Availability Statement: TROPOMI data are available at https://s5phub.copernicus.eu/dhus/#/home. WRF‐CHEM model code is available at https://ruc.noaa.gov/wrf/wrf-chem/. PRISMA data are publicly available to registered users at https://prisma.asi.it/. Registration is free and can be obtained at https://prismauserregistration.asi.it/. VIIRS data are available at https://doi.org/10.5067/VIIRS/VJ103IMG.002.

Attached Files

Published - 2020GL090864.pdf

Supplemental Material - 2020gl090864-sup-0001-text_si-s01.docx

Files

2020GL090864.pdf
Files (7.1 MB)
Name Size Download all
md5:688b2f5c5c6026d62a2a2e1f9a00a418
6.4 MB Download
md5:74e6778d8a9e9a927557c590a0d29c64
740.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023