Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 14, 2020 | Published
Journal Article Open

A decade of GOSAT Proxy satellite CH₄ observations

Abstract

This work presents the latest release (v9.0) of the University of Leicester GOSAT Proxy XCH₄ dataset. Since the launch of the GOSAT satellite in 2009, these data have been produced by the UK National Centre for Earth Observation (NCEO) as part of the ESA Greenhouse Gas Climate Change Initiative (GHG-CCI) and Copernicus Climate Change Services (C3S) projects. With now over a decade of observations, we outline the many scientific studies achieved using past versions of these data in order to highlight how this latest version may be used in the future. We describe in detail how the data are generated, providing information and statistics for the entire processing chain from the L1B spectral data through to the final quality-filtered column-averaged dry-air mole fraction (XCH₄) data. We show that out of the 19.5 million observations made between April 2009 and December 2019, we determine that 7.3 million of these are sufficiently cloud-free (37.6 %) to process further and ultimately obtain 4.6 million (23.5 %) high-quality XCH₄ observations. We separate these totals by observation mode (land and ocean sun glint) and by month, to provide data users with the expected data coverage, including highlighting periods with reduced observations due to instrumental issues. We perform extensive validation of the data against the Total Carbon Column Observing Network (TCCON), comparing to ground-based observations at 22 locations worldwide. We find excellent agreement with TCCON, with an overall correlation coefficient of 0.92 for the 88 345 co-located measurements. The single-measurement precision is found to be 13.72 ppb, and an overall global bias of 9.06 ppb is determined and removed from the Proxy XCH₄ data. Additionally, we validate the separate components of the Proxy (namely the modelled XCO₂ and the XCH₄∕XCO₂ ratio) and find these to be in excellent agreement with TCCON. In order to show the utility of the data for future studies, we compare against simulated XCH₄ from the TM5 model. We find a high degree of consistency between the model and observations throughout both space and time. When focusing on specific regions, we find average differences ranging from just 3.9 to 15.4 ppb. We find the phase and magnitude of the seasonal cycle to be in excellent agreement, with an average correlation coefficient of 0.93 and a mean seasonal cycle amplitude difference across all regions of −0.84 ppb. These data are available at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (Parker and Boesch, 2020).

Additional Information

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Received: 07 May 2020 – Discussion started: 03 Jul 2020 – Revised: 21 Oct 2020 – Accepted: 26 Oct 2020 – Published: 14 Dec 2020. Robert J. Parker, Hartmut Boesch, Alex Webb, Paul I. Palmer and Liang Feng are funded via the UK National Centre for Earth Observation (NE/R016518/1 and NE/N018079/1). Rocio Barrio Guillo and Nikoleta Kalaitzi were funded by a Leicester Institute for Space and EO (LISEO) and ESA-Dragon Programme studentship respectively. JSA was funded by an ESA Living Planet Fellowship. We acknowledge funding from the ESA GHG-CCI and Copernicus C3S projects. We thank the Japanese Aerospace Exploration Agency, National Institute for Environmental Studies and the Ministry of Environment for the GOSAT data and their continuous support as part of the Joint Research Agreement. This research used the ALICE High Performance Computing Facility at the University of Leicester for the GOSAT retrievals and analysis. The TM5-4DVAR CH₄ inversions have been supported by ECMWF providing computing resources under the special project "Improve European and global CH₄ and N₂O flux inversions (2018–2020)". TCCON gratefully acknowledges financial support by ESA within the S5P validation programme. Stations at Park Falls, Lamont and Darwin are supported by NASA. Stations at Tsukuba, Rikubetsu and Burgos are supported in part by the GOSAT series project. Burgos is supported in part by the Energy Development Corp. Philippines. Ascension Island and Garmisch stations have been supported by the European Space Agency (ESA) under grant 4000120088/17/I-EF and by the German Bundesministerium für Wirtschaft und Energie (BMWi) under grants 50EE1711C, 50EE1711E and 50EE1711D. We thank the ESA Ariane Tracking Station at North East Bay, Ascension Island, for hosting and local support. The ETL station is funded by CFI/ORF, NSERC, ECCC and the CSA. The Paris station has received funding from Sorbonne Université, the French research center CNRS, the French space agency CNES and Région Île-de-France. The Eureka measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC), primarily supported by the Natural Sciences and Engineering Research Council of Canada, Environment and Climate Change Canada, and the Canadian Space Agency. The Anmyeondo station has received funding from the Korea Meteorological Administration Research and Development Program "Development and Assessment of IPCC AR6 Climate Change Scenario" under grant 1365003000. The Réunion station is operated by the Royal Belgian Institute for Space Aeronomy with financial support in 2014, 2015, 2016, 2017, 2018 and 2019 under the EU project ICOS-Inwire and the ministerial decree for ICOS (FR/35/IC4) and local activities supported by LACy/UMR8105 – Université de La Réunion. TCCON measurements in Australia are supported by NASA grants NAG5-12247 and NNH05-GD07G, Australian Research Council grants LE0668470, DP089468, DP110103118, DP140101552, DP160101598 and FT180100327, and the GOSAT series project. This research has been supported by the NERC National Centre for Earth Observation (grant nos. NE/N018079/1 and NE/R016518/1). Author contributions. RJP developed and produced the Proxy XCH4 data, performed the analysis, and wrote the manuscript. AW assisted in the production of the data. AW, PS, ADN, HB, JSA, RBG and NK all contributed to development and analysis at different stages of the processing chain. All authors contributed towards discussion and interpretation of the analysis. PB, FC, PIP and LF provided model data and contributed to the interpretation of the comparisons. All TCCON co-authors provided TCCON data and contributed towards interpretation of the GOSAT–TCCON comparisons. Data availability. The University of Leicester GOSAT Proxy v9.0 XCH4 data are available from the Centre for Environmental Data Analysis data repository at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (Parker and Boesch, 2020). The TCCON data are available from the TCCON Data Archive at https://tccondata.org (TCCON Data Archive, 2020; individual data citations are provided in Table F1). CAMS model CO2 (v18r2) data is available from the Copernicus Atmospheric Data Store at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion (ECMWF, 2020a). MACC model CH4 (v10-S1NOAA) is available from ECMWF at https://apps.ecmwf.int/datasets/data/macc-ghg-inversions/ (ECMWF, 2020b). NOAA CarbonTracker model CO2 (CT2017 and CT2019-NRT) are available from NOAA ESRL, Boulder, Colorado, USA, at ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/ (NOAA, 2020). The authors declare that they have no conflict of interest. Review statement. This paper was edited by David Carlson and reviewed by three anonymous referees.

Attached Files

Published - essd-12-3383-2020.pdf

Files

essd-12-3383-2020.pdf
Files (21.2 MB)
Name Size Download all
md5:06ff490e68c00a4a4b141499958b661d
21.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023