Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2020 | public
Book Section - Chapter

System Level Synthesis via Dynamic Programming

Abstract

System Level Synthesis (SLS) parametrization facilitates controller synthesis for large, complex, and distributed systems by incorporating system level constraints (SLCs) into a convex SLS problem and mapping its solution to stable controller design. Solving the SLS problem at scale efficiently is challenging, and current attempts take advantage of special system or controller structures to speed up the computation in parallel. However, those methods do not generalize as they rely on the specific system/controller properties. We argue that it is possible to solve general SLS problems more efficiently by exploiting the structure of SLS constraints. In particular, we derive dynamic programming (DP) algorithms to solve SLS problems. In addition to the plain SLS without any SLCs, we extend DP to tackle infinite horizon SLS approximation and entrywise linear constraints, which form a superclass of the locality constraints. Comparing to convex program solver and naive analytical derivation, DP solves SLS 4 to 12× faster and scales with little computation overhead. We also quantize the cost of synthesizing a controller that stabilizes the system in a finite horizon through simulations.

Additional Information

© 2020 IEEE.

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023