Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2020 | Published
Journal Article Open

From isotropic turbulence in triply periodic cubic domains to sheared turbulence with inflow/outflow

Abstract

Homogeneous shear turbulence (HST) is an idealized version of the shear turbulence observed in practical free shear flows, and can be simulated using simple computational domains. One of the numerically efficient configurations to simulate turbulent flows is to use triply periodic domains. However, owing to the mean streamwise velocity being nonhomogeneous, periodic boundary conditions cannot be used along one of the directions. Several studies included shear periodic boundary conditions in the cross-stream direction. However, in these simulations, the turbulence statistics grew exponentially with time, whereas the turbulence observed in free shear flows is statistically stationary. In Dhandapani et al. [Phys. Rev. Fluids 4, 084606 (2019)], the authors fixed this problem by focusing on the velocity fluctuations, performing HST simulations with only shear production and neglecting shear convection. The current study improves upon the previous simulations by including shear convection, by introducing an inflow/outflow in the cross-stream direction. To reduce the impact of the boundary conditions, an elongated domain is used. The simulation results show that the aspect ratio has very little effect on both isotropic and shear turbulence. When convection is included, the turbulence statistics still reach a statistically stationary state. The Reynolds shear stress and the anisotropy values agree very well with the results from experiments and simulations of mixing layers, planar jets, and round jets.

Additional Information

© 2020 American Physical Society. (Received 8 October 2019; accepted 4 November 2020; published 17 December 2020)

Attached Files

Published - PhysRevFluids.5.124605.pdf

Files

PhysRevFluids.5.124605.pdf
Files (877.8 kB)
Name Size Download all
md5:c14e9b5ec7e9582c1619db060cedafa8
877.8 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023