Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 12, 2021 | Supplemental Material
Journal Article Open

Controlling Covalency and Anion Redox Potentials through Anion Substitution in Li-Rich Chalcogenides

Abstract

Development of next-generation battery technologies is imperative in the pursuit of a clean energy future. Toward that end, battery chemistries capable of multielectron redox processes are at the forefront of studies on Li-based systems to increase the gravimetric capacity of the cathode. Multielectron processes rely either on the iterative redox of transition metal cations or redox involving both the transition metal cations and the anionic framework. Targeting coupled cation and anion redox to achieve multielectron charge storage is difficult, however, because the structure–property relationships that govern reversibility are poorly understood. In an effort to develop fundamental understanding of anion redox, we have developed a materials family that displays tunable anion redox over a range of potentials that are dependent on a systematic modification of the stoichiometry. We report anion redox in the chalcogenide solid solution Li₂FeS_(2–y)Se_y, wherein the mixing of the sulfide and selenide anions yields a controllable shift in the high voltage oxidation plateau. Electrochemical measurements indicate that reversible multielectron redox occurs across the solid solution. X-ray absorption spectroscopy supports the oxidation of both iron and selenium at high states of charge, while Raman spectroscopy indicates the formation of Se–Se dimers in Li₂FeSe₂ upon Li deintercalation, providing insight into the charge mechanism of the Li-rich iron chalcogenides. Anion substitution presents direct control over the functional properties of multielectron redox materials for next generation battery technologies.

Additional Information

© 2020 American Chemical Society. Received: October 26, 2020; Revised: December 10, 2020; Published: December 30, 2020. This work was supported as part of the Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0019381. A.J.M. acknowledges support through a postdoctoral fellowship from the Resnick Sustainability Institute at Caltech. J.J.Z. acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant. No. DGE-1745301. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Author Contributions. (A.J.M. and J.J.Z.) These authors contributed equally to this work. The authors declare no competing financial interest.

Attached Files

Supplemental Material - cm0c04164_si_001.pdf

Files

cm0c04164_si_001.pdf
Files (3.2 MB)
Name Size Download all
md5:9a784a99141d8a4110e436631a69fab6
3.2 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023