Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 13, 2020 | Submitted + Published
Book Section - Chapter Open

Polarization calibration of the BICEP3 CMB polarimeter at the South Pole

Abstract

The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.

Additional Information

© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). The BICEP/Keck project (including BICEP2, BICEP3 and BICEP Array) have been made possible through a series of grants from the National Science Foundation including 0742818, 0742592, 1044978, 1110087, 1145172, 1145143, 1145248, 1639040, 1638957, 1638978, 1638970, 1726917, 1313010, 1313062, 1313158, 1313287, 0960243, 1836010, 1056465, & 1255358 and by the Keck Foundation. The development of antenna-coupled detector technology was supported by the JPL Research and Technology Development Fund and NASA Grants 06-ARPA206-0040, 10-SAT10-0017, 12-SAT12-0031, 14-SAT14-0009, 16-SAT16-0002, & 18-SAT18-0017. The development and testing of focal planes were supported by the Gordon and Betty Moore Foundation at Caltech. Readout electronics were supported by a Canada Foundation for Innovation grant to UBC. The computations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University. The analysis effort at Stanford and SLAC was partially supported by the Department of Energy, Contract DE-AC02-76SF00515. We thank the staff of the U.S. Antarctic Program and in particular the South Pole Station without whose help this research would not have been possible. Tireless administrative support was provided by Kathy Deniston, Sheri Stoll, Irene Coyle, Donna Hernandez, and Dana Volponi.

Attached Files

Published - 1145327.pdf

Published - SPIE-AS20-4f5ff4b6-5d06-ea11-813d-005056be4d05.pdf

Submitted - 2012.05934.pdf

Files

SPIE-AS20-4f5ff4b6-5d06-ea11-813d-005056be4d05.pdf
Files (11.1 MB)
Name Size Download all
md5:956a55e1e1b386260f0ef4fc5353f5c9
973.1 kB Preview Download
md5:76923725b69b39e43ca5b5451abdce93
5.1 MB Preview Download
md5:dbd51adbcfe5e01fb5b4257a645622ea
5.1 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 15, 2024