Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 13, 2020 | Submitted + Published
Book Section - Chapter Open

Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole

Abstract

A detection of curl-type (B-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. Bicep Array (BA) is the Stage-3 instrument of the BK program and will comprise four Bicep3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale B-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full Bicep Array instrument is projected to reach σr between 0.002 and 0.004, depending on foreground complexity and degree of removal of B-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.

Additional Information

© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). Bicep/Keck Array project (including Bicep2 Bicep3 and Bicep Array) have been made possible through a series of grants from the National Science Foundation (including 0742818, 0742592, 1044978, 1110087, 1145172, 1145143, 1145248, 1639040, 1638957, 1638978, 1638970, 1726917, 1313010, 1313062, 1313158, 1313287, 0960243, 1836010, 1056465, 1255358) and by the Keck Foundation. The development of antenna-coupled detector technology was supported by the JPL Research and Technology Development Fund and NASA Grants 06-ARPA206-0040, 10-SAT10-0017, 12-SAT12-0031, 14-SAT14-0009, 16-SAT16-0002, & 18-SAT18-0017. The development and testing of focal planes were supported by the Gordon and Betty Moore Foundation at Caltech. Readout electronics were supported by a Canada Foundation for Innovation grant to UBC. The computations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University. The analysis effort at Stanford and SLAC was partially supported by the Department of Energy, Contract DE-AC02-76SF00515. We thank the staff of the U.S. Antarctic Program and in particular the South Pole Station without whose help this research would not have been possible. Tireless administrative support was provided by Kathy Deniston, Sheri Stoll, Irene Coyle, Donna Hernandez, and Dana Volponi.

Attached Files

Published - 1145314.pdf

Submitted - 2012.04047.pdf

Files

1145314.pdf
Files (29.6 MB)
Name Size Download all
md5:6507eae6d0b97b0a0c793381a00061f2
14.8 MB Preview Download
md5:00fd6abcd453a465b055cdf10775ebb9
14.8 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 15, 2024