Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1, 2020 | Published + Submitted
Journal Article Open

Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector

Amaral, D. W.
Aralis, T.
Aramaki, T.
Arnquist, I. J.
Azadbakht, E.
Banik, S.
Barker, D.
Bathurst, C.
Bauer, D. A.
Bezerra, L. V. S.
Bhattacharyya, R.
Binder, T.
Bowles, M. A.
Brink, P. L.
Bunker, R.
Cabrera, B.
Calkins, R.
Cameron, R. A.
Cartaro, C.
Cerdeño, D. G.
Chang, Y.-Y. ORCID icon
Chen, R.
Chott, N.
Cooley, J.
Coombes, H.
Corbett, J.
Cushman, P.
De Brienne, F.
di Vacri, M. L.
Diamond, M. D.
Fascione, E.
Figueroa-Feliciano, E.
Fink, C. W.
Fouts, K.
Fritts, M.
Gerbier, G.
Germond, R.
Ghaith, M.
Golwala, S. R. ORCID icon
Harris, H. R.
Herbert, N.
Hines, B. A.
Hollister, M. I.
Hong, Z.
Hoppe, E. W.
Hsu, L.
Huber, M. E.
Iyer, V.
Jardin, D.
Jastram, A.
Kelsey, M. H.
Kubik, A.
Kurinsky, N. A.
Lawrence, R. E.
Li, A.
Loer, B.
Lopez Asamar, E.
Lukens, P.
MacDonell, D.
MacFarlane, D. B.
Mahapatra, R.
Mandic, V.
Mast, N.
Mayer, A. J.
Michaud, É. M.
Michielin, E.
Mirabolfathi, N.
Mohanty, B.
Morales Mendoza, J. D.
Nagorny, S.
Nelson, J.
Neog, H.
Novati, V.
Orrell, J. L.
Oser, S. M.
Page, W. A.
Pakarha, P.
Partridge, R.
Podviianiuk, R.
Ponce, F.
Poudel, S.
Pyle, M.
Rau, W.
Reid, E.
Ren, R.
Reynolds, T.
Roberts, A.
Robinson, A. E.
Rogers, H. E.
Saab, T.
Sadoulet, B.
Sander, J.
Sattari, A.
Schnee, R. W.
Scorza, S.
Serfass, B.
Sincavage, D. J.
Stanford, C.
Stein, M.
Street, J.
Toback, D.
Underwood, R.
Verma, S.
Villano, A. N.
von Krosigk, B.
Watkins, S. L.
Wills, L.
Wilson, J. S.
Wilson, M. J. ORCID icon
Winchell, J.
Wright, D. H.
Yellin, S.
Young, B. A.
Yu, T. C.
Zhang, E.
Zhang, H. G.
Zhao, X.
Zheng, L.

Abstract

This article presents an analysis and the resulting limits on light dark matter inelastically scattering off of electrons, and on dark photon and axionlike particle absorption, using a second-generation SuperCDMS high-voltage eV-resolution detector. The 0.93 g Si detector achieved a 3 eV phonon energy resolution; for a detector bias of 100 V, this corresponds to a charge resolution of 3% of a single electron-hole pair. The energy spectrum is reported from a blind analysis with 1.2 g-days of exposure acquired in an above-ground laboratory. With charge carrier trapping and impact ionization effects incorporated into the dark matter signal models, the dark matter-electron cross section σ_e is constrained for dark matter masses from 0.5 to 10⁴  MeV/c²; in the mass range from 1.2 to 50  eV/c² the dark photon kinetic mixing parameter ϵ and the axioelectric coupling constant gae are constrained. The minimum 90% confidence-level upper limits within the above-mentioned mass ranges are σ_e = 8.7×10⁻³⁴ cm², ϵ = 3.3×10⁻¹⁴, and g_(ae) = 1.0×10⁻⁹.

Additional Information

© 2020 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3. Received 29 May 2020; accepted 14 October 2020; published 13 November 2020. We would like to thank Rouven Essig and Tien-Tien Yu for helpful discussions and assistance with using QEdark [57] to generate the dark matter model used in this analysis. We thank Noemie Bastidon for her work in the preliminary design of our optical fiber setup and wire bonding. We gratefully acknowledge support from the U.S. Department of Energy (DOE) Office of High Energy Physics and from the National Science Foundation (NSF). This work was supported in part under NSF Grants No. 1809730 and No. 1707704, as well as by the Arthur B. McDonald Canadian Astroparticle Physics Research Institute, NSERC Canada, the Canada Excellence Research Chair Fund, Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project No. 420484612 and under Germany's Excellence Strategy—EXC 2121 "Quantum Universe"—390833306, the Department of Atomic Energy Government of India (DAE) under the project—Research in basic sciences (Dark matter), and the Department of Science and Technology (DST, India). Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-37407CH11359 with the US Department of Energy. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the DOE under Contract No. DE-AC05-76RL01830. SLAC is operated under Contract No. DEAC02-76SF00515 with the U.S. Department of Energy.

Attached Files

Published - PhysRevD.102.091101.pdf

Submitted - 2005.14067.pdf

Files

2005.14067.pdf
Files (1.7 MB)
Name Size Download all
md5:d042cc17ff4e6c021edf9b4f5f6e4e09
820.9 kB Preview Download
md5:e1d70bbbf7140722c8916e5ad2142f85
855.9 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023