Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 9, 2020 | Submitted
Report Open

Learning Stochastic Closures Using Ensemble Kalman Inversion

Abstract

Although the governing equations of many systems, when derived from first principles, may be viewed as known, it is often too expensive to numerically simulate all the interactions within the first principles description. Therefore researchers often seek simpler descriptions that describe complex phenomena without numerically resolving all the interacting components. Stochastic differential equations (SDEs) arise naturally as models in this context. The growth in data acquisition provides an opportunity for the systematic derivation of SDE models in many disciplines. However, inconsistencies between SDEs and real data at small time scales often cause problems, when standard statistical methodology is applied to parameter estimation. The incompatibility between SDEs and real data can be addressed by deriving sufficient statistics from the time-series data and learning parameters of SDEs based on these. Following this approach, we formulate the fitting of SDEs to sufficient statistics from real data as an inverse problem and demonstrate that this inverse problem can be solved by using ensemble Kalman inversion (EKI). Furthermore, we create a framework for non-parametric learning of drift and diffusion terms by introducing hierarchical, refineable parameterizations of unknown functions, using Gaussian process regression. We demonstrate the proposed methodology for the fitting of SDE models, first in a simulation study with a noisy Lorenz 63 model, and then in other applications, including dimension reduction starting from various deterministic chaotic systems arising in the atmospheric sciences, large-scale pattern modeling in climate dynamics, and simplified models for key observables arising in molecular dynamics. The results confirm that the proposed methodology provides a robust and systematic approach to fitting SDE models to real data.

Additional Information

The authors thank Dr. Yvo Pokern at University College London for providing the butane dihedral angle data. All authors are supported by the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program, by Earthrise Alliance, Mountain Philanthropies, the Paul G. Allen Family Foundation, and the National Science Foundation (NSF, award AGS1835860). A.M.S. is also supported by NSF (award DMS-1818977) and by the Office of Naval Research (award N00014-17-1-2079).

Attached Files

Submitted - 2004.08376.pdf

Files

2004.08376.pdf
Files (3.6 MB)
Name Size Download all
md5:9380aa94f1dc30361ac7bc230d0e8aa0
3.6 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
March 5, 2024