Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2, 2020 | Published
Journal Article Open

The Lavic Lake Fault: A Long-Term Cumulative Slip Analysis via Combined Field Work and Thermal Infrared Hyperspectral Airborne Remote Sensing

Abstract

The 1999 Hector Mine earthquake ruptured to the surface in eastern California, with >5 m peak right-lateral slip on the Lavic Lake fault. The cumulative offset and geologic slip rate of this fault are not well defined, which inhibits tectonic reconstructions and risk assessment of the Eastern California Shear Zone (ECSZ). With thermal infrared hyperspectral airborne imagery, field data, and auxiliary information from legacy geologic maps, we created lithologic maps of the area using supervised and unsupervised classifications of the remote sensing imagery. We optimized a data processing sequence for supervised classifications, resulting in lithologic maps over a test area with an overall accuracy of 71 ± 1% with respect to ground-truth geologic mapping. Using all of the data and maps, we identified offset bedrock features that yield piercing points along the main Lavic Lake fault and indicate a 1036 +27/−26 m net slip, with 1008 +14/−17 m horizontal and 241 +51/−47 m vertical components. For the contribution from distributed shear, modern off-fault deformation values from another study imply a larger horizontal slip component of 1276 +18/−22 m. Within the constraints, we estimate a geologic slip rate of <4 mm/yr, which does not increase the sum geologic Mojave ECSZ rate to current geodetic values. Our result supports previous suggestions that transient tectonic activity in this area may be responsible for the discrepancy between long-term geologic and present-day geodetic rates.

Additional Information

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Received: 6 October 2020 / Revised: 26 October 2020 / Accepted: 29 October 2020 / Published: 1 November 2020. (This article belongs to the Special Issue Hyperspectral and Multispectral Imaging in Geology). We thank the Marine Corps Air Ground Combat Center in Twentynine Palms, California, for allowing access to the military base. We thank Ken Hudnut, Janet Harvey, Kate Scharer, and Sinan Akçiz for their help and support in fieldwork, performing this research, and preparing this manuscript. We also thank the Editors for handling this manuscript, and Nick Van Buer and two anonymous reviewers for helping improve the content. The new data presented in this study are available through Caltech's Research Data Repository (https://doi.org/10.22002/d1.1182). The data used in this study from previously published geologic maps are available from the U.S. Geological Survey's National Geologic Map Database (https://ngmdb.usgs.gov/ngmdb/ngmdb_home.html); the references also indicate the specific URLs for each item. This research was funded by the National Science Foundation (NSF) Graduate Research Fellowship Program under Grant No. 1144469 awarded to R. Witkosky, and by Southern California Earthquake Center (SCEC) Award No. 14160 awarded to J. Stock. This paper is SCEC Contribution No. 8898. SCEC is funded by NSF Cooperative Agreements EAR-1033462 & EAR-0529922, and United States Geological Survey Cooperative Agreements G12AC20038 & 07HQAG0008. Mako airborne hyperspectral imagery was acquired under the auspices of the Aerospace Corporation's Independent Research and Development program. Author Contributions. Conceptualization, R.A.W., J.M.S. and D.M.T.; methodology, R.A.W., J.M.S., D.M.T., K.N.B., D.K.L. and F.J.S.; software, R.A.W., J.M.S., K.N.B. and P.D.J.; validation, R.A.W., J.M.S, D.M.T., K.N.B., P.M.A., P.D.J.; formal analysis, R.A.W.; investigation, R.A.W., J.M.S., D.M.T, K.N.B., P.M.A., P.D.J., D.K.L., F.J.S.; resources, R.A.W., J.M.S., D.M.T., P.M.A.; data curation, R.A.W., J.M.S., D.M.T. and K.N.B.; writing—original draft preparation, R.A.W. and J.M.S.; writing—review and editing, R.A.W., J.M.S., D.M.T., K.N.B., P.M.A., P.D.J., D.K.L. and F.J.S.; visualization, R.A.W., P.D.J. and F.J.S.; funding acquisition, R.A.W, J.M.S. and D.M.T. All authors have read and agreed to the published version of the manuscript. The authors declare no conflict of interest.

Attached Files

Published - remotesensing-12-03586.pdf

Files

remotesensing-12-03586.pdf
Files (10.3 MB)
Name Size Download all
md5:feb714df03a4634fc41fb104576582fe
10.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023