Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 14, 2020 | Supplemental Material
Journal Article Open

Bi Alloying into Rare Earth Double Perovskites Enhances Synthesizability and Visible Light Absorption

Abstract

A high throughput combinatorial synthesis utilizing inkjet printing of precursor inks was used to rapidly evaluate Bi-alloying into double perovskite oxides for enhanced visible light absorption. The fast visual screening of photo image scans of the library plates identifies 4-metal oxide compositions displaying an increase in light absorption, which subsequent UV–vis spectroscopy indicates is due to bandgap reduction. Structural characterization by X-ray diffraction (XRD) and Raman spectroscopy demonstrates that the visually darker composition range contains Bi-alloyed Sm₂MnNiO₆ (double perovskite structure), of the form (Bi,Sm)₂MnNiO₆. Bi alloying not only increases the visible absorption but also facilitates crystallization of this structure at the relatively low annealing temperature of 615 °C. Investigation of additional seven combinations of a rare earth (RE) and a transition metal (TM) with Bi and Mn indicates that Bi-alloying on the RE site occurs with similar effect in the family of rare earth oxide double perovskites.

Additional Information

© 2020 American Chemical Society. Received: August 28, 2020; Revised: October 12, 2020; Published: October 29, 2020. This study is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). The optical analysis to infer phase behavior was supported by the Air Force Office of Scientific Research under award number FA9550-18-1-0136. Author Contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. P.F.N. Synthesized and collected optical data on the libraries and contributed to manuscript preparation. L.Z. collected and analyzed XRD data. M.U. analyzed Raman data. D.A.B. collected and analyzed Raman data. E.S. designed scripts for extracting individual sample images and arranging in composition space. J.A.H. facilitated aggregation of results and their interpretation in the context of the literature and contributed to manuscript preparation. J.M.G. designed the library printing strategy and supported the design of analysis algorithms and visualization schemes, supervised, and contributed to manuscript preparation. The authors declare no competing financial interest.

Attached Files

Supplemental Material - co0c00177_si_001.pdf

Files

co0c00177_si_001.pdf
Files (2.0 MB)
Name Size Download all
md5:cbe8af5430f49c370fbfb122880b98fd
2.0 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023