Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 10, 2020 | Supplemental Material
Journal Article Open

Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries

Abstract

The polymer binders used in most lithium-ion batteries (LIBs) serve only a structural role, but there are exciting opportunities to increase performance by using polymers with combined electronic and ionic conductivity. To this end, here we examine dihexyl-substituted poly(3,4-propylenedioxythiophene) (PProDOT-Hx₂) as an electrochemically stable π-conjugated polymer that becomes electrically conductive (up to 0.1 S cm⁻¹) upon electrochemical doping in the potential range of 3.2 to 4.5 V (vs Li/Li⁺). Because this family of polymers is easy to functionalize, can be effectively fabricated into electrodes, and shows mixed electronic and ionic conductivity, PProDOT-Hx₂ shows promise for replacing the insulating polyvinylidene fluoride (PVDF) commonly used in commercial LIBs. A combined experimental and theoretical study is presented here to establish the fundamental mixed ionic and electronic conductivity of PProDOT-Hx₂. Electrochemical kinetics and electron spin resonance are first used to verify that the polymer can be readily electrochemically doped and is chemically stable in a potential range of interest for most cathode materials. A novel impedance method is then used to directly follow the evolution of both the electronic and ionic conductivity as a function of potential. Both values increase with electrochemical doping and stay high across the potential range of interest. A combination of optical ellipsometry and grazing incidence wide angle X-ray scattering is used to characterize both solvent swelling and structural changes that occur during electrochemical doping. These experimental results are used to calibrate molecular dynamics simulations, which show improved ionic conductivity upon solvent swelling. Simulations further attribute the improved ionic conductivity of PProDOT-Hx₂ to its open morphology and the increased solvation is possible because of the oxygen-containing propylenedioxythiophene backbone. Finally, the performance of PProDOT-Hx₂ as a conductive binder for the well-known cathode LiNi_(0.8)Co_(0.15)Al_(0.05)O₂ relative to PVDF is presented. PProDOT-Hx₂-based cells display a fivefold increase in capacity at high rates of discharge compared to PVDF-based electrodes at high rates and also show improved long-term cycling stability. The increased rate capability and cycling stability demonstrate the benefits of using binders such as PProDOT-Hx₂, which show good electronic and ionic conductivity, combined with electrochemical stability over the potential range for standard cathode operation.

Additional Information

© 2020 American Chemical Society. Received: June 21, 2020; Revised: September 30, 2020; Published: October 19, 2020. This work was supported by the Center for Synthetic Control Across Length-Scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC0019381. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. P.D. and L.Y. acknowledge USC Dornsife Graduate Student Fellowships. We also thank Ram Seshadri for helpful discussions, and we appreciate the assistance of Dr. Chun-Han Lai. Author Contributions: P.D. and B.Z. contributed equally. The authors declare no competing financial interest.

Attached Files

Supplemental Material - cm0c02601_si_001.pdf

Files

cm0c02601_si_001.pdf
Files (6.6 MB)
Name Size Download all
md5:0fe274398e720307b3d95d1db41622c3
6.6 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023