Generalized Exact Scheduling: A Minimal-Variance Distributed Deadline Scheduler
- Creators
-
Nakahira, Yorie
-
Ferragut, Andres
-
Wierman, Adam
Abstract
Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, unpredictability and instability in service capacity often incur operational and infrastructural costs. In this paper, we seek to characterize optimal distributed algorithms that maximize the predictability, stability, or both when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes both the stationary mean and variance of the service capacity subject to strict demand and deadline requirements. For more general settings, we characterize the minimal-variance distributed policies with soft demand requirements, soft deadline requirements, or both. The performance of the optimal distributed policies is compared with that of the optimal centralized policy by deriving closed-form bounds and by testing centralized and distributed algorithms using real data from the Caltech electrical vehicle charging facility and many pieces of synthetic data from different arrival distributions. Moreover, we derive the Pareto-optimality condition for distributed policies that balance the variance and mean square of the service capacity. Finally, we discuss a scalable partially centralized algorithm that uses centralized information to boost performance and a method to deal with missing information on service requirements.
Additional Information
© 2022 INFORMS. Received: January 01, 2019; Accepted: October 14, 2021; Published Online: February 17, 2022.Attached Files
Submitted - 2004.12280.pdf
Files
Name | Size | Download all |
---|---|---|
md5:915ea8afa205181069e4f18b1626a073
|
1.1 MB | Preview Download |
Additional details
- Alternative title
- Minimal-Variance Distributed Deadline Scheduling
- Eprint ID
- 106068
- Resolver ID
- CaltechAUTHORS:20201014-143948343
- Created
-
2020-10-14Created from EPrint's datestamp field
- Updated
-
2022-06-28Created from EPrint's last_modified field