Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2020 | Supplemental Material + Accepted Version
Journal Article Open

Single Protein Encapsulated Doxorubicin as an Efficacious Anticancer Therapeutic

Abstract

Small‐molecule chemotherapeutics are potent and effective against a variety of malignancies, but common and severe side effects restrict their clinical applications. Nanomedicine approaches represent a major focus for improving chemotherapy, but have met limited success. To overcome the limitations of chemotherapy drugs, a novel single protein encapsulation (SPE)‐based drug formulation and delivery platform is developed and its utility in improving doxorubicin (DOX) treatment is tested. Using this methodology, a series of SPEDOX complexes are generated by encapsulating various numbers of DOX molecules into a single human serum albumin (HSA) molecule. UV/fluorescence spectroscopy, membrane dialysis, and dynamic light scattering techniques show that SPEDOXs are stable and uniform as monomeric HSA and display unique properties distinct from those of DOX and DOX‐HSA mixture. Furthermore, detailed procedures to precisely monitor and control both DOX payload and binding strength to HSA are established. Breast cancer xenograft tumor studies reveal that SPEDOX‐6 treatment displays improved pharmacokinetic profiles, higher antitumor efficacy, and lower DOX accumulation in the heart tissue compared with unformulated DOX. This SPE technology, which does not involve nanoparticle assembly and modifications to either small‐molecule drugs or HSA, may open up a new avenue for developing new drug delivery systems to improve anticancer therapeutics.

Additional Information

© 2020 Wiley‐VCH. Issue Online: 06 November 2020; Version of Record online: 12 October 2020; Manuscript revised: 02 September 2020; Manuscript received: 08 June 2020. All in vivo evaluations of SPEDOX complexes using mice were conducted at Charles River Laboratory in accordance with the approval of the Charles River Laboratory Institutional Animal Care and Use Committee. This work was financially supported by Sunstate Biosciences, LLC. Xiaojiang Cui is supported by National Institutes of Health (2R01CA151610), Department of Defense (W81XWH‐18‐1‐0067). The authors would like to thank Professor Robert H. Grubbs at California Institute of Technology for providing valuable discussion and comments regarding a draft manuscript. Conflict of Interest: The author C. J. Yu is a named inventor for patent applications regarding "Single Protein‐Encapsulated Pharmaceutics for Enhancing Therapeutic Effects" in pending. The other authors declare no conflict of interest.

Attached Files

Accepted Version - nihms-1638498.pdf

Supplemental Material - adtp202000135-sup-0001-suppmat.pdf

Files

adtp202000135-sup-0001-suppmat.pdf
Files (1.8 MB)
Name Size Download all
md5:f6c0dcf70f798b84787fa766c10837e7
638.7 kB Preview Download
md5:f08b2150490358fc2f88f4f9a888f770
1.1 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023