Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2020 | Accepted Version + Published
Journal Article Open

Evidence for localized onset of episodic mass loss in Mira

Abstract

Context. Mass loss from long-period variable stars (LPV) is an important contributor to the evolution of galactic abundances. Dust formation is understood to play an essential role in mass loss. It has, however, proven difficult to develop measurements that strongly constrain the location and timing of dust nucleation and acceleration. Aims. Interferometric imaging has the potential to constrain the geometry and dynamics of mass loss. High angular resolution studies of various types have shown that LPVs have a distinct core-halo structure. These have also shown that LPV images commonly exhibit a non-circular shape. The nature of this shape and its implications are yet to be understood. Methods. Multi-telescope interferometric measurements taken with the Interferometric Optical Telescope Array (IOTA) provide imagery of the LPV Mira in the H-band. This wavelength region is well suited to studying mass loss given the low continuum opacity, which allows for emission to be observed over a very long path in the stellar atmosphere and envelope. Results. The observed visibilities are consistent with a simple core-halo model to represent the central object and the extended molecular layers but, in addition, they demonstrate a substantial asymmetry. An analysis with image reconstruction software shows that the asymmetry is consistent with a localized absorbing patch. The observed opacity is tentatively associated with small dust grains, which will grow substantially during a multi-year ejection process. Spatial information along with a deduced dust content of the cloud, known mass loss rates, and ejection velocities provide evidence for the pulsational pumping of the extended molecular layers. The cloud may be understood as a spatially local zone of enhanced dust formation, very near to the pulsating halo. The observed mass loss could be provided by several such active regions around the star. Conclusions. This result provides an additional clue for better understanding the clumpiness of dust production in the atmosphere of AGB stars. It is compatible with scenarios where the combination of pulsation and convection play a key role in the process of mass loss.

Additional Information

© G. Perrin et al. 2020. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 3 January 2020 / Accepted 14 August 2020. This research has made use of NASA's Astrophysics Data System Bibliographic Services, the SIMBAD and AFOEV databases, operated at CDS, Strasbourg, France and of the AAVSO database. The work of STR is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. We thank the anonymous referee for suggestions which improved the content and presentation of the report.

Attached Files

Published - aa37443-20.pdf

Accepted Version - 2008.09801.pdf

Files

2008.09801.pdf
Files (1.8 MB)
Name Size Download all
md5:ed9a3937f0745f230004312e8b753feb
825.0 kB Preview Download
md5:0c687ad355b0e8deabfceee081f36686
995.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023