Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2020 | Published + Submitted
Journal Article Open

GOODS-ALMA: Using IRAC and VLA to probe fainter millimeter galaxies

Abstract

In this paper, we extend the source detection in the GOODS-ALMA field (69 arcmin², 1σ ≃ 0.18 mJy beam⁻¹) to deeper levels than presented in our previous work. Using positional information at 3.6 and 4.5 μm (from Spitzer-IRAC) as well as the Very Large Array (VLA) at 3 GHz, we explore the presence of galaxies detected at 1.1 mm with ALMA below our original blind detection limit of 4.8-σ, at which the number of spurious sources starts to dominate over that of real sources. In order to ensure the most reliable counterpart association possible, we have investigated the astrometry differences between different instruments in the GOODS–South field. In addition to a global offset between the Atacama Large Millimeter/submillimeter Array (ALMA) and the Hubble Space Telescope (HST) already discussed in previous studies, we have highlighted a local offset between ALMA and the HST that was artificially introduced in the process of building the mosaic of the GOODS–South image. We created a distortion map that can be used to correct for these astrometric issues. In this Supplementary Catalog, we find a total of 16 galaxies, including two galaxies with no counterpart in HST images (also known as optically dark galaxies), down to a 5σ limiting depth of H = 28.2 AB (HST/WFC3 F160W). This brings the total sample of GOODS-ALMA 1.1 mm sources to 35 galaxies. Galaxies in the new sample cover a wider dynamic range in redshift (z = 0.65−4.73), are on average twice as large (1.3 vs 0.65 kpc), and have lower stellar masses (M⋆^(SC) = 7.6 × 10¹⁰ M_⊙ vs M⋆^(MC) = 1.2 × 10¹¹ M_⊙). Although exhibiting larger physical sizes, these galaxies still have far-infrared sizes that are significantly more compact than inferred from their optical emission.

Additional Information

© M. Franco et al. 2020. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 30 April 2020; Accepted 7 August 2020; Published online 02 November 2020. We thank the anonymous referee for the insightful comments and suggestions that improved the clarity and quality of this work. M.F. acknowledges support from the UK Science and Technology Facilities Council (STFC) (grant number ST/R000905/1). B.M. acknowledges support from the Collaborative Research Centre 956, sub-project A1, funded by the Deutsche Forschungsgemeinschaft (DFG) – project ID 184018867. L.Z. acknowledges the support from the National Key R&D Program of China (No. 2017YFA0402704, No. 2018YFA0404502), the National Natural Science Foundation of China (NSFC grants 11825302, 11733002 and 11773013) and China Scholarship Council (CSC). R.D. gratefully acknowledges support from the Chilean Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA) BASAL grant AFB-17000. GEM acknowledges support from the Villum Fonden research grant 13160 "Gas to stars, stars to dust: tracing star formation across cosmic time", the Cosmic Dawn Center of Excellence funded by the Danish National Research Foundation and the ERC Consolidator Grant funding scheme (project ConTExt, grant number No. 648179). MP is supported by the ERC-StG "ClustersXCosmo", grant agreement 71676. DMA acknowledges support from the Science and Technology Facilities Council (ST/P000541/1; ST/T000244/1). This work was supported by the Programme National Cosmology et Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00543.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

Attached Files

Published - aa38310-20.pdf

Submitted - 2005.03040.pdf

Files

aa38310-20.pdf
Files (9.9 MB)
Name Size Download all
md5:5fdc941036d45f02f773ed8f74cc66cc
5.3 MB Preview Download
md5:03621935630e129c477258e00522aa0c
4.6 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023