Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 7, 2006 | Published
Journal Article Open

Possible Origins of the Complex Topographic Organization of Motor Cortex: Reduction of a Multidimensional Space onto a Two-Dimensional Array

Abstract

We propose that some of the features of the topographic organization in motor cortex emerge from a competition among several conflicting mapping requisites. These competing requisites include a somatotopic map of the body, a map of hand location in space, and a partitioning of cortex into regions that emphasize different complex, ethologically relevant movements. No one type of map fully explains the topography; instead, all three influences (and perhaps others untested here) interact to form the topography. A standard algorithm (Kohonen network) was used to generate an artificial motor cortex array that optimized local continuity for these conflicting mapping requisites. The resultant hybrid map contained many features seen in actual motor cortex, including the following: a rough, overlapping somatotopy; a posterior strip in which simpler movements were represented and more somatotopic segregation was observed, and an anterior strip in which more complex, multisegmental movements were represented and the somatotopy was less segregated; a clustering of different complex, multisegmental movements into specific subregions of cortex that resembled the arrangement of subregions found in the monkey; three hand representations arranged on the cortex in a manner similar to the primary motor, dorsal premotor, and ventral premotor hand areas in the monkey; and maps of hand location that approximately matched the maps observed in the monkey.

Additional Information

© 2006 Society for Neuroscience. Beginning six months after publication the Work will be made freely available to the public on SfN's website to copy, distribute, or display under a Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/). Received Feb. 20, 2006; revised April 26, 2006; accepted April 26, 2006. This work was supported by National Institutes of Health Grant NS-046407 and by Burroughs Wellcome Grant 992817. We thank T. Mole and J. McCain.

Attached Files

Published - 6288.full.pdf

Files

6288.full.pdf
Files (2.2 MB)
Name Size Download all
md5:c728982c1da1f579a9478f50289ff41f
2.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023