Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2020 | Published
Journal Article Open

Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of Curiosity's Exploration Campaign

Abstract

This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray‐colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe‐rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric‐related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record.

Additional Information

© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Issue Online: 23 December 2020; Version of Record online: 23 December 2020; Accepted manuscript online: 27 July 2020; Manuscript accepted: 20 July 2020; Manuscript revised: 16 July 2020; Manuscript received: 13 May 2020. We acknowledge the hundreds of members of Curiosity's science and engineering team, without each of whom it would have not been possible to collect this rich in situ data set. We thank Deane Rogers and Sally Potter‐McIntyre for providing thoughtful comments that improved the clarity of this manuscript. We would like to thank Scott McLennan, Dawn Sumner, and Allan Treiman for serving as guest Editors for this special issue. We would also like to thank the JGR‐Planets Editors and staff for their support and patience, especially Laurent Montessi, Tanya Dzekon, and Steven Hauck. A. A. F. thanks E. Lakdawalla for improving the plain language summary. A. A. F., C. M. F., C. H. H., C. H., K. M. S., R. E. A., C. S. E., B. H. N. H., J. R. J., and M. R. S. acknowledge funding through the MSL Participating Scientist Program. J. G. C. acknowledges funding the NASA Exobiology Program. S. G. acknowledges funding from the UK Space Agency (UKSA) Grants ST/N000579/1 and ST/S001492/1, and J. B., S. P. S., and S. M. T. acknowledge funding by UKSA Grant ST/S001476/1. J. F. acknowledges funding by the Carlsberg Foundation. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration © 2020. All rights reserved. Data Availability Statement: All of the data collected by Curiosity during the Vera Rubin ridge campaign can be found on the Planetary Data System (PDS, http://pds.nasa.gov), and most are easily accessible on the Curiosity Analyst's Notebook (https://an.rsl.wustl.edu/msl). This review contains no new data, and the reader should refer to the data statements in the cited manuscripts.

Attached Files

Published - 2020JE006527.pdf

Files

2020JE006527.pdf
Files (45.5 MB)
Name Size Download all
md5:62c8214810075e91518a88164b9e7986
45.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023