Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 21, 2015 | public
Book Section - Chapter

Leakless DNA Strand Displacement Systems

Abstract

While current experimental demonstrations have been limited to small computational tasks, DNA strand displacement systems (DSD systems) [25] hold promise for sophisticated information processing within chemical or biological environments. A DSD system encodes designed reactions that are facilitated by three-way or four-way toehold-mediated strand displacement. However, such systems are capable of spurious displacement events that lead to leak: incorrect signal production. We have identified sources of leak pathways in typical existing DSD schemes that rely on toehold sequestration and are susceptible to toeless strand displacement (i.e. displacement reactions that occur despite the absence of a toehold). Based on this understanding, we propose a simple, domain-level motif for the design of leak-resistant DSD systems. This motif forms the basis of a number of DSD schemes that do not rely on toehold sequestration alone to prevent spurious displacements. Spurious displacements are still possible in our systems, but require multiple, low probability events to occur. Our schemes can implement combinatorial Boolean logic formulas and can be extended to implement arbitrary chemical reaction networks.

Additional Information

© 2015 Springer International Publishing Switzerland. First Online: 21 July 2015. The authors are supported by a Banting Fellowship (CT), NSF CCF/HCC Grant No. 1213127, NSF CCF Grant No. 1317694, and NIGMS Systems Biology Center grant P50 GM081879 (DS). We thank Boya Wang and Robert Machinek for helpful discussions.

Additional details

Created:
August 22, 2023
Modified:
January 15, 2024