Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1999 | public
Book Section - Chapter

Quantum Teleportation

Abstract

Quantum information differs profoundly from classical information by virtue of the properties, implications, and uses of quantum entanglement—the non-separable correlations among parts of a quantum system. John Bell's famous theorem on the incompatibility of quantum mechanics with local hidden-variable theories established that these correlations have no classical counterpart.[1] More recently, new algorithms for quantum computation and communication make clear that quantum entanglement is essential for accomplishing otherwise impossible tasks. Perhaps the most remarkable of such possibilities is quantum teleportation, whereby an unknown quantum state is "disembodied" into quantum and classical components and resurrected at a remote location via quantum entanglement. [2]

Additional Information

© 1999 Springer Science+Business Media Dordrecht.

Additional details

Created:
August 22, 2023
Modified:
January 15, 2024