Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 17, 2015 | Published
Journal Article Open

The Dawn of Aurora Kinase Research: From Fly Genetics to the Clinic

Abstract

Aurora kinases comprise a family of highly conserved serine-threonine protein kinases that play a pivotal role in the regulation of cell cycle. Aurora kinases are not only involved in the control of multiple processes during cell division but also coordinate chromosomal and cytoskeletal events, contributing to the regulation of checkpoints and ensuring the smooth progression of the cell cycle. Because of their fundamental contribution to cell cycle regulation, Aurora kinases were originally identified in independent genetic screens designed to find genes involved in the regulation of cell division. The first aurora mutant was part of a collection of mutants isolated in C. Nusslein-Volhard's laboratory. This collection was screened in D. M. Glover's laboratory in search for mutations disrupting the centrosome cycle in embryos derived from homozygous mutant mothers. The mutants identified were given names related to the "polar regions," and included not only aurora but also the equally famous polo. Ipl1, the only Aurora in yeast, was identified in a genetic screen looking for mutations that caused chromosome segregation defects. The discovery of a second Aurora-like kinase in mammals opened a new chapter in the research of Aurora kinases. The rat kinase AIM was found to be highly homologous to the fly and yeast proteins, but localized at the midzone and midbody and was proposed to have a role in cytokinesis. Homologs of the equatorial Aurora (Aurora B) were identified in metazoans ranging from flies to humans. Xenopus Aurora B was found to be in a complex with the chromosomal passenger INCENP, and both proteins were shown to be essential in flies for chromosome structure, segregation, central spindle formation and cytokinesis. Fifteen years on, Aurora kinase research is an active field of research. After the successful introduction of the first anti-mitotic agents in cancer therapy, both Auroras have become the focus of attention as targets for the development of new anti-cancer drugs. In this review we will aim to give a historical overview of the research on Aurora kinases, highlighting the most relevant milestones in the advance of the field.

Additional Information

© 2015 Carmena, Earnshaw and Glover. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Received: 01 October 2015; Accepted: 02 November 2015; Published: 17 November 2015. THIS ARTICLE IS PART OF THE RESEARCH TOPIC: Aurora kinases: classical mitotic roles, non-canonical functions and translational views The authors would like to apologize to all those authors whose work has not been mentioned directly in this article due to space restrictions. Work in the WE lab is funded by The Wellcome Trust, of which WE is a Principal Research Fellow [grant number 107022]. Work in DG's lab is funded by grants from Cancer Research UK (C3/A18795) and the Medical Research Council (G1001696). Author Contributions: MC drafted the manuscript. MC, DG, and WE revised the manuscript and approved for submission. Conflict of Interest Statement. The Associate Editor Dr Marcos Malumbres declares that, despite having collaborated with the author Dr William Earnshaw, the review process was handled objectively and no conflict of interest exists.

Attached Files

Published - fcell-03-00073.pdf

Files

fcell-03-00073.pdf
Files (310.8 kB)
Name Size Download all
md5:14e7477a1ca5672b961891b56dd853eb
310.8 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023