Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling
Abstract
We calculate the linear vacuum perturbations of a Kerr black hole surrounded by a slowly varying external spacetime to third order in the ratio of the black-hole mass to the radius of curvature of the external spacetime. This expansion applies to two relevant physical scenarios: (i) a small Kerr black hole immersed in the gravitational field of a much larger external black hole, and (ii) a Kerr black hole moving slowly around another external black hole of comparable mass. This small-hole/slow-motion approximation allows us to parametrize the perturbation through slowly varying, time-dependent electric and magnetic tidal tensors, which then enable us to separate the Teukolsky equation and compute the Newman-Penrose scalar analytically to third order in our expansion parameter. We obtain generic expressions for the mass and angular momentum flux through the perturbed black hole horizon, as well as the rate of change of the horizon surface area, in terms of certain invariants constructed from the electric and magnetic tidal tensors. We conclude by applying these results to the second scenario described above.
Additional Information
© 2013 American Physical Society. Received 6 November 2012; published 8 February 2013. We thank Luis Lehner for helpful discussions while working on this paper. N. Y. acknowledges support from NSF Grant No. PHY-1114374 and NASA Grant No. NNX11AI49G, under 00001944. E. P. acknowledges support from the Natural Sciences and Engineering Research Council of Canada.Attached Files
Published - PhysRevD.87.044022.pdf
Accepted Version - 1211.1686.pdf
Files
Name | Size | Download all |
---|---|---|
md5:1fa465aeac93b3b9af06c30fc4fc8b6a
|
305.1 kB | Preview Download |
md5:e3e6129f67f0b26bdca43488eaba27c6
|
250.1 kB | Preview Download |
Additional details
- Eprint ID
- 104748
- Resolver ID
- CaltechAUTHORS:20200805-085848789
- NSF
- PHY-1114374
- NASA
- NNX11AI49G
- NASA
- 00001944
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Created
-
2020-08-05Created from EPrint's datestamp field
- Updated
-
2021-11-16Created from EPrint's last_modified field