Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2020 | Published + Submitted + Supplemental Material
Journal Article Open

Effects of shear-thinning viscosity and viscoelastic stresses on flagellated bacteria motility

Abstract

The behavior of flagellated bacteria swimming in non-Newtonian media remains an area with contradictory and conflicting results. We report on the behavior of wild-type and smooth-swimming E. coli in Newtonian, shear-thinning, and viscoelastic media, measuring their trajectories and swimming speed using a three-dimensional real-time tracking microscope. We conclude that the speed enhancement in Methocel solution at higher concentrations is due to shear thinning and an analytical model is used to support our experimental result. We argue that shear-induced normal stresses reduce wobbling behavior during cell swimming but do not significantly affect swimming speed. However, the normal stresses play an important role in decreasing the flagellar bundling time, which changes the swimming-speed distribution. A dimensionless number, the "strangulation number" (Str) is proposed and used to characterize this effect.

Additional Information

© 2020 American Physical Society. (Received 5 April 2019; accepted 2 June 2020; published 10 July 2020) We are grateful to the Coli Genetic Stock Center (Yale University) and to Howard Berg for bacterial strains and advice. We thank Anubhav Tripathi for help in measuring the fluid viscosities. A special thanks is due to Saverio Spagnolie, who provided considerable insight into the modeling of the filament in a viscoelastic fluid and who suggested the name "strangulation number." This work was supported by the National Science Foundation (CBET 1336638).

Attached Files

Published - PhysRevFluids.5.073103.pdf

Submitted - 2004.10729.pdf

Supplemental Material - stic_stresses_on_flagellated_bacteria_motility.pdf

Files

stic_stresses_on_flagellated_bacteria_motility.pdf
Files (1.1 MB)
Name Size Download all
md5:f6187aec2426b6d64cb7faa8a322d4fa
257.8 kB Preview Download
md5:b15b22004ce61db7f5d11f1088257575
401.0 kB Preview Download
md5:037e1a8613aee58f9b2f81fecdb6c91a
418.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023