Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 28, 2020 | Published + Supplemental Material
Journal Article Open

In vivo anticancer activity of a rhodium metalloinsertor in the HCT116 xenograft tumor model

Abstract

Mismatch repair (MMR) deficiencies are a hallmark of various cancers causing accumulation of DNA mutations and mismatches, which often results in chemotherapy resistance. Metalloinsertor complexes, including [Rh(chrysi)(phen)(PPO)]Cl₂ (Rh-PPO), specifically target DNA mismatches and selectively induce cytotoxicity within MMR-deficient cells. Here, we present an in vivo analysis of Rh-PPO, our most potent metalloinsertor. Studies with HCT116 xenograft tumors revealed a 25% reduction in tumor volume and 12% increase in survival with metalloinsertor treatment (1 mg/kg; nine intraperitoneal doses over 20 d). When compared to oxaliplatin, Rh-PPO displays ninefold higher potency at tumor sites. Pharmacokinetic studies revealed rapid absorption of Rh-PPO in plasma with notable accumulation in the liver compared to tumors. Additionally, intratumoral metalloinsertor administration resulted in enhanced anticancer effects, pointing to a need for more selective delivery methods. Overall, these data show that Rh-PPO inhibits xenograft tumor growth, supporting the strategy of using Rh-PPO as a chemotherapeutic targeted to MMR-deficient cancers.

Additional Information

© 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). Contributed by Jacqueline K. Barton, May 18, 2020 (sent for review April 8, 2020; reviewed by Jonathan L. Sessler and Brian M. Zeglis). PNAS first published July 13, 2020. We are grateful to the NIH for their long-term support of this research (GM33309 to J.K.B.). We thank Dr. Julie Bailis and Dr. Kelsey Boyle for participating in useful discussions that assisted with the design of this study, as well as Dr. Nathan Dalleska from the Environmental Analysis Center at California Institute of Technology for assistance with the ICP-MS analysis. We also thank Yuming Guo for technical assistance. This work was also performed in the City of Hope Analytical Pharmacology Core Facility supported by the National Cancer Institute under Grant P30CA033572. Author contributions: S.D.T., T.W.S., J.W., and J.K.B. designed research; S.D.T. and T.W.S. performed research; S.D.T., T.W.S., and J.W. analyzed data; and S.D.T. and J.K.B. wrote the paper. Reviewers: J.L.S., The University of Texas at Austin; and B.M.Z., Hunter College. The authors declare no competing interest. This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2006569117/-/DCSupplemental.

Attached Files

Published - 17535.full.pdf

Supplemental Material - pnas.2006569117.sapp.pdf

Files

17535.full.pdf
Files (1.1 MB)
Name Size Download all
md5:6ab9b2cf4c3a3bf8b58f8d2bf18b8054
857.2 kB Preview Download
md5:c7b0fcbead9537a042193a284a49e31b
222.2 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023