Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 24, 2020 | Submitted
Report Open

Tentative Evidence for Water Vapor in the Atmosphere of the Neptune-Size Exoplanet HD 106315 c

Abstract

We present a transmission spectrum for the Neptune-size exoplanet HD 106315 c from optical to infrared wavelengths based on transit observations from the Hubble Space Telescope/Wide Field Camera 3, K2, and Spitzer. The spectrum shows tentative evidence for a water absorption feature in the 1.1−1.7μm wavelength range with a small amplitude of 30 ppm (corresponding to just 0.8±0.04 atmospheric scale heights). Based on an atmospheric retrieval analysis, the presence of water vapor is tentatively favored with a Bayes factor of 1.7 - 2.6 (depending on prior assumptions). The spectrum is most consistent with either enhanced metallicity, high altitude condensates, or both. Cloud-free solar composition atmospheres are ruled out at >5σ confidence. We compare the spectrum to grids of cloudy and hazy forward models and find that the spectrum is fit well by models with moderate cloud lofting or haze formation efficiency, over a wide range of metallicities (1−100× solar). We combine the constraints on the envelope composition with an interior structure model and estimate that the core mass fraction is ≳0.3. With a bulk composition reminiscent of that of Neptune and an orbital distance of 0.15 AU, HD 106315 c hints that planets may form out of broadly similar material and arrive at vastly different orbits later in their evolution.

Additional Information

Support for HST program GO-15333 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is based [in part] on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology under acontract with NASA. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. This research made use of matplotlib, a Python library for publication quality graphics (Hunter 2007) This research made use of SciPy (Virtanen et al. 2020) This research made use of NumPy (Van Der Walt et al. 2011). P.M. acknowledges support from the European Research Council under the European Union's Horizon 2020 research and innovation program under grant agreement No. 832428. Y.K. acknowledges support from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement 776403. L.K. acknowledge M.R. Line for illuminating discussions.

Attached Files

Submitted - 2006.07444.pdf

Files

2006.07444.pdf
Files (2.5 MB)
Name Size Download all
md5:b8871b696d681e50f2f177d9fd4c502d
2.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023