Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2020 | Submitted
Book Section - Chapter Open

MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework

Abstract

We propose MESHFREEFLOWNET, a novel deep learning-based super-resolution framework to generate continuous (grid-free) spatio-temporal solutions from the lowresolution inputs. While being computationally efficient, MESHFREEFLOWNET accurately recovers the fine-scale quantities of interest. MESHFREEFLOWNET allows for: (i) the output to be sampled at all spatio-temporal resolutions, (ii) a set of Partial Differential Equation (PDE) constraints to be imposed, and (iii) training on fixed-size inputs on arbitrarily sized spatio-temporal domains owing to its fully convolutional encoder. We empirically study the performance of MESHFREEFLOWNET on the task of super-resolution of turbulent flows in the Rayleigh-Bénard convection problem. Across a diverse set of evaluation metrics, we show that MESHFREEFLOWNET significantly outperforms existing baselines. Furthermore, we provide a large scale implementation of MESHFREEFLOWNET and show that it efficiently scales across large clusters, achieving 96.80% scaling efficiency on up to 128 GPUs and a training time of less than 4 minutes. We provide an opensource implementation of our method that supports arbitrary combinations of PDE constraints.

Additional Information

© 2020 IEEE. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The research was performed at the Lawrence Berkeley National Laboratory for the U.S. Department of Energy under Contract No. DE340AC02-5CH11231. K. Kashinath is supported by the Intel Big Data Center at NERSC. K. Azizzadenesheli gratefully acknowledges the financial support of Raytheon and Amazon Web Services. A. Anandkumar is supported in part by Bren endowed chair, DARPA PAIHR00111890035 and LwLL grants, Raytheon, Microsoft, Google, and Adobe faculty fellowships. We also acknowledge the Industrial Consortium on Reservoir Simulation Research at Stanford University (SUPRI-B).

Attached Files

Submitted - 2005.01463.pdf

Files

2005.01463.pdf
Files (7.5 MB)
Name Size Download all
md5:59f9f8beef3b72c5fa680263413b7d96
7.5 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023