Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2016 | Published
Journal Article Open

The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets

Abstract

We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1–3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate‐bearing unit, (5) a hematite‐capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near‐infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late‐stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.

Additional Information

© 2016 The Authors. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. Received 1 JUN 2016; Accepted 26 AUG 2016; Accepted article online 30 AUG 2016; Published online 17 SEP 2016. We thank two anonymous reviewers for their careful reading and insight comments that improved the quality of this manuscript. Thanks to Lulu Pan for providing helpful advice on CRISM parameter mapping techniques, Ara Oshagan for assistance in generating the HiRISE color mosaic, Dawn Sumner for nomenclature guidance, and Kathryn Stack Morgan for fruitful discussions about orbital mapping interpretations and sharing her general knowledge of the Gale Crater geologic context. A.A.F. was partially supported by a W.M. Keck Institution for Space Studies Postdoctoral Fellowship and Caltech Geological and Planetary Sciences Texaco Postdoctoral Fellowship. A portion of this research was also carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. B.L.E. was partially supported by an MSL Participating Scientist Program grant. All raw data products supporting the conclusions of this work can be obtained from the NASA Planetary Data System (PDS).

Attached Files

Published - JGRE-121-1713.pdf

Files

JGRE-121-1713.pdf
Files (7.9 MB)
Name Size Download all
md5:1e95b6972347d954aad856424cb9ed23
7.9 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023