Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 14, 2020 | Accepted Version + Supplemental Material
Journal Article Open

Very regular high-frequency pulsation modes in young intermediate-mass stars

Abstract

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies. It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars, red giants, high-mass stars4 and white dwarfs. However, a large group of pulsating stars of intermediate mass—the so-called δ Scuti stars—have rich pulsation spectra for which systematic mode identification has not hitherto been possible. This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns. Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra.

Additional Information

© 2020 Springer Nature Limited. Received 17 July 2019; Accepted 27 February 2020; Published 13 May 2020. We gratefully acknowledge the TESS and Kepler teams, whose efforts made these results possible. This research was partially conducted during the Exostar19 programme at the Kavli Institute for Theoretical Physics at UC Santa Barbara, which was supported in part by the National Science Foundation under grant no. NSF PHY-1748958. We thank colleagues in that programme, especially R. Townsend, for many stimulating discussions. We also thank A. Moya, A. G. Hernández, J. C. Suárez and Z. Guo for comments on the manuscript. We gratefully acknowledge support from the Australian Research Council (grant DE 180101104), and from the Danish National Research Foundation (grant DNRF106) through its funding for the Stellar Astrophysics Center (SAC). D.H. acknowledges support from the Alfred P. Sloan Foundation, the National Aeronautics and Space Administration (80NSSC18K1585, 80NSSC19K0379), and the National Science Foundation (AST-1717000). H.K. acknowledges support from the European Social Fund via the Lithuanian Science Council (LMTLT) grant 09.3.3-LMT-K-712-01-0103. Y.L. acknowledges support from the Joint Research Fund in Astronomy (U1631236) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS). D.L.H. acknowledges support by the Science and Technology Facilities Council under grant ST/M000877/1. The research leading to these results has (partially) received funding from the Research Foundation Flanders (FWO) under grant agreement G0H5416N (ERC Runner Up Project). This work makes use of observations from the LCOGT network. This work has also made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Some of the observations reported in this paper were obtained with the Southern African Large Telescope (SALT) under programmes 2015-2-SCI-007, 2016-2-SCI-015 and 2017-2-SCI-010. The ISIS instrument is mounted on the WHT, which is operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias. The Veloce Rosso facility was funded by Australian Research Council (ARC) Linkage Infrastructure, Equipment and Facility (LIEF) grants LE150100087 and LE160100014, and UNSW Research Infrastructure Scheme grant RG163088. C.G.T. and C.B. acknowledge the support of ARC Discovery grant DP170103491. V.A. was supported by a research grant (00028173) from VILLUM FONDEN. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. We also acknowledge the traditional owners of the land on which the Anglo-Australian Telescope stands, the Gamilaraay people, and pay our respects to elders past, present and emerging. Data availability: TESS and Kepler data are available from the MAST portal (https://archive.stsci.edu/access-mast-data). All other data are available from the corresponding author upon reasonable request. Code availability: We have made use of standard data analysis tools in Python, as noted and referenced in Methods. Author Contributions: T.R.B., S.J.M., D. R. Hey, W.J.C., G.L., Y.L., I.L.C. and J.Y. analysed the photometric observations; T.L., D.S., W.H.B., T.R.W., D.R.R., J.F. and J.J.H. calculated and/or interpreted theoretical models; V.A. and H.K. coordinated the selection of the targets for the TESS observations; D.H., D. R. Harbeck, S.S., B.S., T.M.B., A.W.H., H.I., C.M., M.R., C.B., A.D.R., C.G.T, M.J.I. and D.L.H. obtained and/or analysed the spectroscopic observations; E.G. and A.W.M. identified objects that belong to moving groups; G.R.R., R.K.V. and J.M.J. were key architects of the TESS Mission. All authors reviewed the manuscript. The authors declare no competing interests.

Attached Files

Accepted Version - 2005.06157.pdf

Supplemental Material - 41586_2020_2226_Fig5_ESM.webp

Supplemental Material - 41586_2020_2226_Fig6_ESM.webp

Supplemental Material - 41586_2020_2226_Fig7_ESM.webp

Files

2005.06157.pdf
Files (2.6 MB)
Name Size Download all
md5:7890bab5fbe408899b2f4a9fd65c7a1e
2.2 MB Preview Download
md5:e20c8d3d969aa6dd8aa84f564f4a58c9
189.8 kB Download
md5:a5c5bed15740a2970a57b4d5013c6839
251.1 kB Download
md5:83fc4ffbb4e5eb3580dabf4741d455e2
18.8 kB Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023