Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2020 | public
Journal Article

Highlights of exoplanetary science from Spitzer

Abstract

Observations of extrasolar planets were not projected to be a substantial part of the Spitzer Space Telescope's mission when it was conceived and designed. Nevertheless, Spitzer was the first facility to detect thermal emission from a hot Jupiter-sized planet, and the range of its exoplanetary investigations grew to encompass transiting planets, microlensing, brown dwarfs, and direct imaging searches and astrometry. Spitzer used phase curves to measure the longitudinal distribution of heat as well as time-dependent heating on hot Jupiters. Its secondary eclipse observations strongly constrained the dayside thermal emission spectra and corresponding atmospheric compositions of hot Jupiters, and the timings of eclipses were used for studies of orbital dynamics. Spitzer's sensitivity to carbon-based molecules such as methane and carbon monoxide was key to atmospheric composition studies of transiting exoplanets as well as imaging spectroscopy of brown dwarfs, and complemented Hubble Space Telescope spectroscopy at shorter wavelengths. Its capability for long continuous observing sequences enabled searches for new transiting planets around cool stars and helped to define the architectures of planetary systems such as TRAPPIST-1. Spitzer measured masses for small planets at large orbital distances using microlensing parallax. Spitzer observations of brown dwarfs probed their temperatures, masses and weather patterns. Imaging and astrometry from Spitzer was used to discover new planetary-mass brown dwarfs and to measure distances and space densities of many others.

Additional Information

© 2020 Springer Nature Limited. Received 16 December 2019; Accepted 08 April 2020; Published 14 May 2020. We thank M. Marley for his comments on the brown dwarf section and E. Agol for his comments on the TRAPPIST-1 masses. We thank Y. Chachan, N. Wallack and M. Zhang for making figures. Author Contributions: Both authors worked on writing the text and selecting the figures and references. The authors declare no competing interests. Peer review information Nature Astronomy thanks Charles Beichman for their contribution to the peer review of this work.

Additional details

Created:
August 22, 2023
Modified:
February 2, 2024