Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2019 | Published + Submitted
Journal Article Open

Asymmetries in adaptive optics point spread functions

Abstract

An explanation for the origin of asymmetry along the preferential axis of the point spread function (PSF) of an AO system is developed. When phase errors from high-altitude turbulence scintillate due to Fresnel propagation, wavefront amplitude errors may be spatially offset from residual phase errors. These correlated errors appear as asymmetry in the image plane under the Fraunhofer condition. In an analytic model with an open-loop AO system, the strength of the asymmetry is calculated for a single mode of phase aberration, which generalizes to two dimensions under a Fourier decomposition of the complex illumination. Other parameters included are the spatial offset of the AO correction, which is the wind velocity in the frozen flow regime multiplied by the effective AO time delay and propagation distance or altitude of the turbulent layer. In this model, the asymmetry is strongest when the wind is slow and nearest to the coronagraphic mask when the turbulent layer is far away, such as when the telescope is pointing low toward the horizon. A great emphasis is made about the fact that the brighter asymmetric lobe of the PSF points in the opposite direction as the wind, which is consistent analytically with the clarification that the image plane electric field distribution is actually the inverse Fourier transform of the aperture plane. Validation of this understanding is made with observations taken from the Gemini Planet Imager, as well as being reproducible in end-to-end AO simulations.

Additional Information

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. Paper 19027 received Mar. 20, 2019; accepted for publication Sep. 23, 2019; published online Oct. 25, 2019. This research was sponsored by grants from NSF AST-1411868, NASA NNX14AJ80G, NNX15AC89G, and NNX15AD95G. Research benefited from the Gemini Observatory, operated by AURA for NSF and the Gemini Consortium. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344. Special thanks are owed to Paul Williams, Alfredo Dubra, Julien Milli, Faustine Cantalloube, and Elena Masciadri for their helpful discussions.

Attached Files

Published - 049003_1.pdf

Submitted - 1909.12981.pdf

Files

1909.12981.pdf
Files (8.3 MB)
Name Size Download all
md5:9b5cdac5202053fdfcd0a2d44eae2418
3.5 MB Preview Download
md5:9e286a493a41066e7c86e6429fbf2456
4.8 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023