Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 16, 2017 | Published + Supplemental Material
Journal Article Open

Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

Abstract

Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θ_(AHE) ≈ 20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system.

Additional Information

© The Author(s) 2017. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Received 27 October 2016. Accepted 01 February 2017. Published 16 March 2017. We thank M. Nakamura, J. Matsuno, K. Takahashi, T. Dietl, D. Goldhaber-Gordon and L.W. Molenkamp for fruitful discussions. This work was partly supported by Grant-in-Aids for Scientific Research (S) nos 24226002 and 24224009 from MEXT, Japan, 'Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST)' Program from the Japan Society for the Promotion of Science (JSPS) initiated by the Council for Science and Technology Policy as well as by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). A.E. is grateful for financial support by DFG in the framework of SFB762 Functionality of Oxide Interfaces. Author Contributions: D.M. conceived the research project, carried out the experiments and analysed the data. J.F. grew samples. D.M., A.S.M., M.S.B. and M.K. discussed the results. A.S.M., M.S.B., A.E. and N.N. worked out the theory. D.M. wrote the manuscript with contribution from A.S.M., M.S.B. and A.E. M.K. supervised the project. All authors contributed to the discussion and commented on the final manuscript. Data availability: The data that support the findings of this study are available from the corresponding author upon request. The authors declare no competing financial interests.

Attached Files

Published - ncomms14777.pdf

Supplemental Material - 41467_2017_BFncomms14777_MOESM2712_ESM.pdf

Files

41467_2017_BFncomms14777_MOESM2712_ESM.pdf
Files (4.1 MB)
Name Size Download all
md5:a6a52f85c930b4d4c3f10e44dedaccfa
1.4 MB Preview Download
md5:d11ca6f0bc10bb46c969921730aad84a
2.7 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023