Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2020 | Accepted Version + Published
Journal Article Open

Population-level Eccentricity Distributions of Imaged Exoplanets and Brown Dwarf Companions: Dynamical Evidence for Distinct Formation Channels

Abstract

The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100 au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e = 0–1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e ≈ 0.6–0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1–200 au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR 8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age.

Additional Information

© 2020 The American Astronomical Society. Received 2019 July 13; revised 2019 November 22; accepted 2019 November 23; published 2020 January 23. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. We thank the anonymous referee for constructive suggestions that improved the quality of this manuscript; Jason Wang, Erik Petigura, Michael Liu, and Quang Tran for helpful feedback on this study; and Eugene Chiang for discussions about long-period planet formation. The eccentricity posteriors for Gl 229 B and the HR 8799 planets were shared by Tim Brandt and Jason Wang. Brian Mason provided astrometry in the WDS catalog for Ross 458. B.P.B. acknowledges support from the National Science Foundation grant AST-1909209. S.B. is supported by the NSF Graduate Research Fellowship, grant No. DGE 1745303. This work was supported by a NASA Keck PI Data Award, administered by the NASA Exoplanet Science Institute. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. NASA's Astrophysics Data System Bibliographic Services together with the VizieR catalog access tool and SIMBAD database operated at CDS, Strasbourg, France, were invaluable resources for this work. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Facilities: Keck:II (NIRC2) - , Subaru (HiCIAO) - .

Attached Files

Published - Bowler_2020_AJ_159_63.pdf

Accepted Version - 1911.10569.pdf

Files

1911.10569.pdf
Files (27.6 MB)
Name Size Download all
md5:56a672840341fcc2bce17f4e2e3f3adf
20.8 MB Preview Download
md5:8c1a2890820244272f5fff2854039e1c
6.8 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023