Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 24, 2003 | public
Journal Article

Neural prosthetic control signals from plan activity

Abstract

The prospect of assisting disabled patients by translating neural activity from the brain into control signals for prosthetic devices, has flourished in recent years. Current systems rely on neural activity present during natural arm movements. We propose here that neural activity present before or even without natural arm movements can provide an important, and potentially advantageous, source of control signals. To demonstrate how control signals can be derived from such plan activity we performed a computational study with neural activity previously recorded from the posterior parietal cortex of rhesus monkeys planning arm movements. We employed maximum likelihood decoders to estimate movement direction and to drive finite state machines governing when to move. Performance exceeded 90% with as few as 40 neurons.

Additional Information

© 2003 Lippincott, Williams & Wilkins. We thank B.L. Gillikin, J. Wynne, J. Baer and J.S. Pezaris for expert advice and assistance in designing and performing the surgery to implant a chronic electrode array in PRR. We also thank E.M. Maynard, B.W. Hatt, R.A. Normann, N.G. Hatsopoulos and J.P. Donoghue for surgical and electrode-array advice related to this surgery. We thank M. Sahani for writing the real-time behavioral control and data collection software HYDRA2, D.J. Dubowitz for pre-surgical MRI and R.A. Normann for lending us LFP amplifiers. Finally, we thank B.L. Gillikin for veterinary assistance, Cierina Marks for administrative assistance and Viktor Shcherbatyuk for computer assistance. This work was supported in part by NIH, DARPA, ONR, Sloan Center for Theoretical Neurobiology at Caltech, McKnight Foundation, NSF Engineering Research Center at Caltech, James G. Boswell Neuroscience Professorship (R.A.A.), and Burroughs Wellcome Fund Career Award in the Biomedical Sciences (K.V.S.).

Additional details

Created:
August 22, 2023
Modified:
October 19, 2023