Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2020 | Accepted Version + Published
Journal Article Open

Tidal disruption of planetary bodies by white dwarfs I: a hybrid sph-analytical approach

Abstract

We introduce a new hybrid method to perform high-resolution tidal disruption simulations, at arbitrary orbits. An SPH code is used to simulate tidal disruptions only in the immediate spatial domain of the star, namely, where the tidal forces dominate over gravity, and then during the fragmentation phase in which the emerging tidal stream may collapse under its own gravity to form fragments. Following each hydrodynamical simulation, an analytical treatment is then applied to instantaneously transfer each fragment back to the tidal sphere for its subsequent disruption, in an iterative process. We validate the hybrid model by comparing it to both an analytical impulse approximation model of single tidal disruptions, as well as full-scale SPH simulations spanning the entire disc formation. The hybrid simulations are essentially indistinguishable from the full-scale SPH simulations, while computationally outperforming their counterparts by orders of magnitude. Thereby our new hybrid approach uniquely enables us to follow the long-term formation and continuous tidal disruption of the planet/planetesimal debris, without the resolution and orbital configuration limitation of previous studies. In addition, we describe a variety of future directions and applications for our hybrid model, which is in principle applicable to any star, not merely white dwarfs.

Additional Information

© 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model). Received: 21 November 2019; Revision received: 09 January 2020; Accepted: 12 January 2020; Published: 16 January 2020. We wish to thank the anonymous reviewer for excellent suggestions and comments that have greatly improved this manuscript. UM and HBP acknowledge support from the Minerva center for life under extreme planetary conditions, the Israeli Science and Technology ministry Ilan Ramon grant and the ISF I-CORE grant 1829/12. HBP is supported by the Kingsley distinguished visitor program in Caltech.

Attached Files

Published - staa142.pdf

Accepted Version - 1911.12068.pdf

Files

1911.12068.pdf
Files (5.8 MB)
Name Size Download all
md5:5968be1d8be3201930fa9cdf6b285bf0
3.2 MB Preview Download
md5:63af55d1938d056bf1ab79fb8450326b
2.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023