Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 18, 1986 | Published
Book Section - Chapter Open

Moderate Resolution Spectroscopy For The Space Infrared Telescope Facility (SIRTF)

Abstract

A conceptual design for an infrared spectrometer capable of both low resolution (λ/Δ-λ = 50; 2.5-200 microns) and moderate resolution (1000; 4-200 microns) and moderate resolution (1000; 4-200 microns) has been developed. This facility instrument will permit the spectroscopic study in the infrared of objects ranging from within the solar system to distant galaxies. The spectroscopic capability provided by this instrument for SIRTF will give astronomers orders of magnitude greater sensitivity for the study of faint objects than had been previously available. The low resolution mode will enable detailed studies of the continuum radiation. The moderate resolution mode of the instrument will permit studies of a wide range of problems, from the infrared spectral signatures of small outer solar system bodies such as Pluto and the satellites of the giant planets, to investigations of more luminous active galaxies and QS0s at substantially greater distances. A simple design concept has been developed for the spectrometer which supports the science investigation with practical cryogenic engineering. Operational flexibility is preserved with a minimum number of mechanisms. The five modules share a common aperture, and all gratings share a single scan mechanism. High reliability is achieved through use of flight-proven hardware concepts and redundancy. The design controls the heat load into the SIRTF cryogen, with all heat sources other than the detectors operating at 7K and isolated from the 4K cold station. Two-dimensional area detector arrays are used in the 2.5-120μm bands to simultaneously monitor adjacent regions in extended objects and to measure the background near point sources.

Additional Information

© 1986 Society of Photo-Optical Instrumentation Engineers (SPIE). This work has been supported by NASA Grant NAG 2-317.

Attached Files

Published - 69.pdf

Files

69.pdf
Files (299.2 kB)
Name Size Download all
md5:c49df67b4a944794a33b1172866648d9
299.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024