Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2020 | Published
Journal Article Open

Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo

Abstract

Significance: Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. Aim: We aim to demonstrate label-free imaging of suspected melanoma CTCs. Approach: We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. Results: With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. Conclusions: We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma.

Additional Information

© 2020 The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. Received: 29 November 2019; Accepted: 27 February 2020; Published: 13 March 2020. The authors appreciate Professor James Ballard's close reading of the manuscript and gratefully acknowledge the help of Dr. Nancy Bodet, Pamela Gassner, and Mary Tabacchi in the patient study. This work was sponsored by the U.S. National Institutes of Health (NIH), Grants DP1 EB016986 (NIH Director's Pioneer Award), R01 CA186567 (NIH Director's Transformative Research Award), R01 EB016963, U01 NS090579, and U01 NS099717. Disclosures: L.V.W. has a financial interest in Microphotoacoustics, Inc., CalPACT, LLC, and Union Photoacoustic Technologies, Ltd., which, however, did not support this work.

Attached Files

Published - 036002_1.pdf

Files

036002_1.pdf
Files (4.3 MB)
Name Size Download all
md5:b6a9a6b44265db18befb47f667034d97
4.3 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023