Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2020 | Submitted
Journal Article Open

A Gaussian moment method and its augmentation via LSTM recurrent neural networks for the statistics of cavitating bubble populations

Abstract

Phase-averaged dilute bubbly flow models require high-order statistical moments of the bubble population. The method of classes, which directly evolve bins of bubbles in the probability space, are accurate but computationally expensive. Moment-based methods based upon a Gaussian closure present an opportunity to accelerate this approach, particularly when the bubble size distributions are broad (polydisperse). For linear bubble dynamics a Gaussian closure is exact, but for bubbles undergoing large and nonlinear oscillations, it results in a large error from misrepresented higher-order moments. Long short-term memory recurrent neural networks, trained on Monte Carlo truth data, are proposed to improve these model predictions. The networks are used to correct the low-order moment evolution equations and improve prediction of higher-order moments based upon the low-order ones. Results show that the networks can reduce model errors to less than 1% of their unaugmented values.

Additional Information

© 2020 Elsevier Ltd. Received 10 December 2019, Revised 21 February 2020, Accepted 2 March 2020, Available online 6 March 2020. The US Office of Naval Research supported this work under MURI grant N0014-17-1-2676.

Attached Files

Submitted - 1912.04450.pdf

Files

1912.04450.pdf
Files (554.4 kB)
Name Size Download all
md5:4fa2c3e15bcfa5bff8fcce6bd1f4451b
554.4 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
January 26, 2024