Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 1997 | public
Book Section - Chapter

Nonlinear Shallow Water Waves Generated By Submerged Moving Slender Bodies: An Experimental Study

Abstract

In the present study, we examine the consistency and validity of the Boussinesq and KdV equations in describing nonlinear water waves generated by vertical slender bodies moving with near critical speed in a rectangular channel. Our study is focused on investigating the effect of disturbance length L on wave generation, and whether the two long wave models, which in theory require L to be much greater than water depth H, can actually be applied to cases where L/H = O(1). Our numerical results based on the KdV and Boussinesq wave models show that, if L is sufficiently long, the dominant factor affecting wave amplitude and period will be the ratio of the maximum disturbance width (i.e., beam of a vertical strut) over the channel width, while L has little effect. This confirms Ertekin''s (1984) and Mei''s (1986) earlier results on the "blockage coefficient". When L is of the same order of H, we found that, as L decreases, it weakens the forcing strength significantly. Results from our towing tank experiments with Froude number ranging from 0.8 to 1.07 revealed that the long wave models give good predictions for resonantly forced long waves even when L is slightly shorter than water depth.

Additional Information

© 1997 by The International Society of Offshore and Polar Engineers. Document IDISOPE-I-97-303.

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023