Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2, 2020 | Published
Book Section - Chapter Open

Status and future developments of integrated photonic spectrographs for astronomy and Earth and planetary sciences

Abstract

The size and cost of astronomical instruments for extremely large telescopes (ELTs), are pushing the limits of what is feasible, requiring optical components at the very edge of achievable size and performance. Operating at the diffraction-limit, the realm of photonic technologies, allows for highly compact instruments to be realized. In particular, Integrated Photonic Spectrographs (IPSs) have the potential to replace an instrument the size of a car with one that can be held in the palm of a hand. This miniaturization in turn offers dramatic improvements in mechanical and thermal stability. Owing to the single-mode fiber feed, the performance of the spectrograph is decoupled from the telescope and the instruments point spread function can be calibrated with a much higher precision. These effects combined mean that an IPS can provide superior performance with respect to a classical bulk optic spectrograph. In this paper we provide a summary of efforts made to qualify IPSs for astronomical applications to date. These include the early characterization of arrayed waveguide gratings for multi-object injection and modifications to facilitate a continuous spectrum, to the integration of these devices into prototypical instruments and most recently the demonstration of a highly optimized instrument directly fed from an 8-m telescope. We will then outline development paths necessary for astronomy, currently underway, which include broadening operating bands, bandwidth, increasing resolution, implementing cross-dispersion on-chip and integrating these devices with other photonic technologies and detectors such as superconducting Microwave Kinetic Inductance Detector arrays. Although the focus of this work is on IPS applicability to astronomy, they may be even more ideally suited to Earth and planetary science applications.

Additional Information

© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). N. Cvetojevic acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement CoG-683029).

Attached Files

Published - 112870K.pdf

Files

112870K.pdf
Files (2.3 MB)
Name Size Download all
md5:93d2accf6b095ee0adea441804a0f44f
2.3 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024