Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2005 | Submitted
Book Section - Chapter Open

Complexity of Self-assembled Shapes (Extended Abstract)

Abstract

The connection between self-assembly and computation suggests that a shape can be considered the output of a self-assembly "program," a set of tiles that fit together to create a shape. It seems plausible that the size of the smallest self-assembly program that builds a shape and the shape's descriptional (Kolmogorov) complexity should be related. We show that under the notion of a shape that is independent of scale this is indeed so: in the Tile Assembly Model, the minimal number of distinct tile types necessary to self-assemble an arbitrarily scaled shape can be bounded both above and below in terms of the shape's Kolmogorov complexity. As part of the proof of the main result, we sketch a general method for converting a program outputting a shape as a list of locations into a set of tile types that self-assembles into a scaled up version of that shape. Our result implies, somewhat counter-intuitively, that self-assembly of a scaled up version of a shape often requires fewer tile types, and suggests that the independence of scale in self-assembly theory plays the same crucial role as the independence of running time in the theory of computability.

Additional Information

© 2005 Springer-Verlag Berlin Heidelberg. We thank Len Adleman, members of his group, and Paul Rothemund for fruitful discussions and suggestions. We thank Rebecca Schulman and David Zhang for useful and entertaining conversations about descriptional complexity of tile systems. This work was supported by NSF CAREER Grant No. 0093486.

Attached Files

Submitted - 0412096.pdf

Files

0412096.pdf
Files (487.6 kB)
Name Size Download all
md5:f51d362fee3da9dd588bf0192c9e271a
487.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 14, 2024